以MoO3/PEDOT:PSS薄膜作为空穴传输层的钙钛矿光伏电池及其制备方法。针对现有技术的不足,目的在于提供一种MoO3/PEDOT:PSS薄膜作为空穴传输层的钙钛矿光伏电池及其制备方法。
为实现上述目的,本发明所采用的技术方案为:一种以MoO3/PEDOT:PSS薄膜作为空穴传输层的钙钛矿光伏电池,其特征在于,电池由下到上依次包括透明导电衬底、MoO3/PEDOT:P
导电聚合物厂
以MoO3/PEDOT:PSS薄膜作为空穴传输层的钙钛矿光伏电池及其制备方法。针对现有技术的不足,目的在于提供一种MoO3/PEDOT:PSS薄膜作为空穴传输层的钙钛矿光伏电池及其制备方法。
为实现上述目的,本发明所采用的技术方案为:一种以MoO3/PEDOT:PSS薄膜作为空穴传输层的钙钛矿光伏电池,其特征在于,电池由下到上依次包括透明导电衬底、MoO3/PEDOT:PSS空穴传输层、钙钛矿光敏层、电子传输层和反射电极。
进一步的,上述方案中,所述的透明导电衬底为沉积有ITO、FTO、AZO的玻璃衬底或者柔性衬底。
进一步的,上述方案中,所述的光伏电池使用MoO3/PEDOT:PSS作为空穴传输层。
进一步的,上述方案中,所述的钙钛矿光敏层为CH3NH3PbI3、CH3NH3PbI3-xClx、CH3NH3PbBr3、CsPbI3、CsPbI3-xClx、CsPbBr3中的一种。
进一步的,上述方案中,所述的电子传输层为C60、C70、PCBM中的一种,作为改进,在制备电子传输层上继续制备一层Bphen、BCP、AlQ3中的一种作为电极修饰层。
进一步的,上述方案中,所述的反射电极为Al电极、Ag电极或者Au电极中的一种。
PEDOT成膜方法
目前PEDOT成膜方法主要有物理涂覆法、电化学聚合法和原位聚合法:
物理涂敷法
物理涂覆法是将PEDOT分散液,通过刮涂、滴涂、旋涂等方式,涂覆在基材表面,经干燥后形成PEDOT薄膜。这类材料可应用于电致变色智能窗、电致变色显示器、无眩反射镜、电色储存器件、红外发s器件、雷达吸波材料等多个领域。通常情况下,需要利用水溶性较好的PSS作为络合离子与PEDOT形成PEDOT:PSS聚合物,使不溶于水的PEDOT可以获得较好的水溶性以及成膜性。
物理涂覆法操作简单,直接使用市售的PEDOT溶液或对其进行一定的掺杂改性后即可涂膜。其缺点主要是由于PEDOT本身不溶不熔的性质而不能单独成膜,要加入PSS形成分散液后方能采用物理涂覆法。聚合物(PEDOT)的合成方法介绍自从shirakawaetal发现了聚乙Q具有高导电率后,导电聚合物这个领域已引起了科学家的广泛兴趣。此外物理法制得的膜厚度较大,厚度j确度较低。但是其方便地添加粒子、更换电解液等,是适用于大规模工业化的一种成膜方法。
PEDOT (或PEDOT:PSS)在电化学储能体系中可以作为活性物质(主要提供双电层电容)、导电添加剂、粘结剂等组分,这使得PEDOT复合材料电极在储能器件中有极为广泛的应用。PEDOT薄膜对电极的成膜方法染料敏化太阳能电池(DSSC)主要是模仿光合作用原理,研制出来的一种新型太阳电池,具有寿命长、结构简单、生产成本较低、易于大规模工业化生产等优点,近年来取得了很大的进展。对PEDOT纳米复合材料在电化学电容器、电池以及交流滤波器件等应用典型实例的分析,PEDOT材料在电化学储能体系中的,即制备具有功能性的电化学储能器件(柔性、可拉伸性等)或者通过PEDOT骨架结构的化学修饰来实现更高的能量储存密度。
该RT-PEDOT:PSS杨氏模量约为1 kPa,在50%拉伸条件下能保持其80%导电性。为进一步减少RT-PEDOT:PSS凝胶体系与生物器件(模量1~100 kPa)的模量差异,研究团队引入第二凝胶组分聚酰胺(PAAm)以提升凝胶体系机械性能;共混改性凝胶体系的模量可实现1~100 kPa范围内精细调控。同时,PAAm凝胶组分的引入未导致改性凝胶体系整体的导电性能的明显降低。印刷方法制备了高导电的PEDOT:PSS/AgNW杂化透明薄膜。该新型PEDOT:PSS导电凝胶体系的室温凝胶化特性,使其能够基于简便的注射成型实现在曲面基底成膜或制备不同形状凝胶纤维用于生物电子器件构筑。
(作者: 来源:)