几何模型建立与网格划分
计算模型采用掘进工作面4-72-5.6A 防爆防腐蚀的离心式通风机,其主要参数:电机功率22 kW,转速2 930 r/min,流量10 122~25 736 m3/h,全压4 152~2 330 Pa。其主要由进风口、集流器、叶轮和蜗壳组成。
柜式离心通风机集流器中添加了米字形结构与环形挡环。风机结构复杂且叶片外形不规则,
柜式离心通风机
几何模型建立与网格划分
计算模型采用掘进工作面4-72-5.6A 防爆防腐蚀的离心式通风机,其主要参数:电机功率22 kW,转速2 930 r/min,流量10 122~25 736 m3/h,全压4 152~2 330 Pa。其主要由进风口、集流器、叶轮和蜗壳组成。
柜式离心通风机集流器中添加了米字形结构与环形挡环。风机结构复杂且叶片外形不规则,因此生成结构化网格比较困难,相反非结构化网格适应能力强,在处理复杂结构时有利于网格的自适应。
因此柜式离心通风机采用四面体非结构化网格。使用ANSYS 软件中的CFD 软件进行网格划分,加米字形集流器模型网格数1 072 503,网格节点数184 910;普通圆弧形模型网格数1 296 832,网格节点数223 847。以离心风机在掘进工作面环境下的运行工况为依据,进行柜式离心通风机参数设置:流量取22 806.54 m3/h,流速取6.335 15 m/s, 质量流量取7.491 3 kg/s。把Pro/E 建立的几何模型导入Fluent 中并对几何模型的边界条件计算参数进行设定。其中入口类型采用速度进口,出口设为压力边界条件,本计算采用的样机是矿用式离心风机, 出口静压可以近似为0,蜗壳内壁及叶轮壁面粗糙度均取0.5,集流器、叶轮、蜗壳等各流体区域结合处的公共面采用interface边界类型面, 将叶片的压力面和吸力面以及叶轮前盘、后盘和转轴的内外表面一起定义为旋转壁面。其中进出口和叶轮区域采用结构化网格,而蜗壳部分由于其内部结构复杂,尤其是电动机周围结构并非规则模型,故采用适应性较强的非结构化四面体网格,具体网格如图3所示。环境压力为101 325 Pa,取粉尘流体密度ρ=1.225 kg/m3。计算时采用SIMPLE 压力速度耦合方法进行。
柜式离心通风机对比分析
在额定转速下, 假定风机进出口处截面上动压静压均匀分布,对风机进口、出口压力及压差,集流器进出口压力及其压差进行统计。取点方法:在截面中心为轴心,周边均匀取了20 个点,之后计算取其平均值,可以看出,同流量下,加米字形集流器的静压和全压差分别为-4 389.0 Pa 和-2 252.9 Pa,而普通圆弧形集流器的压差为-982.9 Pa 和-32.1 Pa,相比可以看出,柜式离心通风机 加米字形集流器导流效果比普通圆弧形集流器好。但是同流量下,普通圆弧形集流器比加米字形集流器风机压差大,有效值大2 366 Pa,风机全压差加米字形比普通圆弧形小2 350.8 Pa,减少的这部分能量用于摩擦发热。通过试验证明相对于周向蜗板加装消声材料,风机后盖板加装消声材料消声效果明显,且结构简单、制造方便风机压力损失小。说明集流器经过改造提高了粉尘流的导流能力,提高了风机的性能。
本文对掘进工作面柜式离心通风机集流器结构进行了改进研究。并对改进前、后的结构的集流器导流效果做了理论分析。然后应用Fluent 流体软件对其进行了数值建模分析, 充分认识离心分机内部流场流体的流动规律,并得到集流器及整个风机的压力云图,截面所受阻力云图,并取点做了统计分析。研究结果表明:柜式离心通风机加米字形集流器使集流器进出口压差增加,明显地起到对粉尘流场的导流作用。各部件结构优化对离心风机金属叶轮稳定运行的影响集流器优化对柜式离心通风机金属叶轮稳定运行的影响集流器的工作原理是通过将气流均匀地送入叶轮进口截面,以达到提高柜式离心通风机叶轮的效率以及风机整体性能的目的。但是集流器由于增加米字形支撑架,造成集流器截面的摩擦力增大,消耗了风机的一部分动能。但对大型除尘离心风机总体来看,采用该结构大大减少制造难度和加工成本,提高了经济效益。
柜式离心通风机与4 种消声方式风机的A 声级对比。从图中可以看出,每一种方式都有着不错的降噪效果,其中C 型改进风机降噪效果好,在额定工况点附近总A声级能降低约7 dB( A) ; B 型改进风机降噪效果也比较理想,优于A 和D 型改进风机; A 型改进风机的消声效果差。出现上述情况的原因应该是电机噪声通过蜗壳会被放大,而没有被吸声材料有效吸收。因此在蜗壳的优化设计过程中必须将蜗壳宽度对流场的影响考虑在内,合理设计外壳的宽度,降低对流场的影响。但后盖板加装消声材料,恰好吸收了电机的部分噪声,因此后盖板加装吸声材料降低风机噪声明显。
本文对吸声蜗壳对风机降噪效果进行了研究,分别对单独蜗板、后盖板、蜗板与后盖板、蜗板与前盖板加装消声材料的4 种方式进行了试验测量,在柜式离心通风机全工况范围内,风机噪声都有不同程度的降低,其中蜗板加后盖板组合的降噪效果好。由于穿孔板摩擦损失较大,气体流动阻力增加,导致风机压力和效率都有不同程度的降低。通过试验证明相对于周向蜗板加装消声材料,风机后盖板加装消声材料消声效果明显,且结构简单、制造方便风机压力损失小。目前国内外学者对离心风机蜗壳型线的研究,主要集中在寻找能真实反映蜗壳内流体流动状态的设计方法。也证明了消声蜗壳有很好的降噪效果,并且柜式离心通风机蜗壳尺寸虽然有一定的增大,但相对于消声器等其他降噪方法优势还是很明显的。对风机进出口安装条件有限制并且对噪声有一定要求的离心风机,吸声蜗壳是较好的选择。
为改善柜式离心通风机受气体粘性影响导致流动分离加剧的现象,在传统蜗壳型线设计理论的基础上,研究气体粘性力矩对蜗壳壁线分布的影响,并采用动量矩修正方法对其进行改型设计。另外,为真实反映风机内流场分布情况,在标准k-ε 计算模型的扩散项中加入粘性应力作用,使其高计算误差降低至