低温萃取技术溶剂的性质及选择
当流体的温度和压力处于它的临界温度和临界压力以上时,即使继续加压丙烷,也不会液化,只是密度增加而已,它既具有类似液体的某些性质,又保留了气体的某些性能,这种状态的流体也称为亚临界流体。低温萃取技术是利用流体在亚临界状态下溶解待分离的液体或固体混合物而使萃取物从混合物中分离出来。但另一方面,CO2的流量增加,可增大萃取过程的传质推动力,相应地增
工业提取设备
低温萃取技术溶剂的性质及选择
当流体的温度和压力处于它的临界温度和临界压力以上时,即使继续加压丙烷,也不会液化,只是密度增加而已,它既具有类似液体的某些性质,又保留了气体的某些性能,这种状态的流体也称为亚临界流体。低温萃取技术是利用流体在亚临界状态下溶解待分离的液体或固体混合物而使萃取物从混合物中分离出来。但另一方面,CO2的流量增加,可增大萃取过程的传质推动力,相应地增大传质系数,使传质速率加快,从而提高SFE的萃取能力。
所选溶剂具有若干的性质,密度比气体大数百倍,与液体的密度接近。其粘度则比液体小得多,仍接近气体的粘度。既具有液体对物质的高溶解度的特性,又具有气体易于扩散和流动的特性。在植物色素提纯生产制造中的运用:传统式的植物脂溶性黑色素用己烷溶剂提取,水溶性色素自来水或酒精提取,都是有加温脱溶的加工工艺全过程,危害产品。对于萃取和分离更有用的是,在临界点附近温度和压力的微小变化会引起溶剂密度的显著变化,从而使亚临界流体溶解物质的能力发生显著的变化。
在植物精油提取生产中的应用。植物精油的成份多为脂溶性化合物,以丁烷、丙烷对鲜湿的花朵、茎叶进行亚临界萃取,可得到浸膏产品,目前已进行工业化批量生产的有玫瑰、十香菜等,茶叶、姜、茴香、大蒜等的精油提取都已进行了很多研究试验,具备了工业化生产的条件。超声波萃取仪由超声波发生系统、加热系统、制冷系统、控温系统、搅拌系统组成。
湿物料脂溶性成份的直接萃取。由于水分影响物料中脂溶性成份的萃取,在萃取般要进行烘干或晒干,例如辣椒红色素提取前必须将辣椒晒干、去籽去梗、磨粉造粒,这个预处理的过程耗费大量人力及能量,并造成红色素的损失,采取亚临界湿法萃取工艺,将改变目前的工艺。提取茶氨酸,能够摆脱水法加工工艺的很多污水处理难题,现代化的生产制造新项目已在方案中。
超临界流体萃取是一种新型萃取分离技术。它利用超临界流体,即处于温度高于临界温度、压力高于临界压力的热力学状态的流体作为萃取剂。从液体或固体中萃取出特定成分,以达到分离目的。由于活塞不断向上运动,使气缸内压力不断升高,气体温度同时升高,当缸内压力高于排气管道的压力时,排气环阀被顶开,气体排入排气管道。超临界流体萃取的特点是:萃取剂在常压和室温下为气体,萃取后易与萃余相和萃取组分离。
作用和扩散作用,因而SF对许多物质有很强的溶解能力。这些特性使得超临界流体成为一种好的萃取剂。而超临界流体萃取,就是利用超临界流体的这一强溶解能力特性,从动、植物中提取各种有效成份,再通过减压将其释放出来的过程。它在媒质中传播能引起媒质分子间的剧烈摩擦和热量耗散,从而产生各种初级和次级的超声波效应,如超声波热效应、化学效应、空化效应及其他物理效应等。超临界流体对物质进行溶解和分离的过程就叫超临界流体萃取。
低温萃取的基本原理。溶剂与被萃取物料接触,使物料中的某些组分(称萃取物),在常温和一定压力下丙烷,用溶剂逆流萃取油料料胚,然后使混合油和脱脂物料中的溶剂减压气化,与物料中其他组分分离,之后通过降低压力或调节温度,降低溶剂的密度,从而降低其溶解能力,使溶剂解析出其所携带的萃取物,达到萃取分离的目的。CO2的流量:CO2的流量的变化对超临界萃取有两个方面的影响。
低温萃取技术的特点:通过调节压力可提取纯度较高的有效成分;选择适宜的溶剂可在较低温度,分离、精制热敏性物质和易氧化物质;当温度不超过某一标值,对气体开展充压,能够使气体液化,而在该温度之上,不管加多少工作压力都不可以使气体液化,这一温度叫该气体的临界温度。具有良好的渗透性和溶解性,能从固体或黏稠的原料中提取出有效成分;容易使溶剂从产品中分离,无溶剂污染,且回收溶剂过程丙烷,能耗低。
(作者: 来源:)