这些物质紧密地覆盖在金属表面上成为钝化膜而导致金属钝化,化学钝化则是像浓HNO3等氧化剂直接对金属的作用而在表面形成氧化膜,或加入易钝化的金属如Cr、Ni等而引起的。化学钝化时,加入的氧化剂浓度还不应小于某一临界值,不然不但不会导致钝态,反将引起金属更快的溶解。
当金属溶解时,处在钝化条件下,在表面生成紧密的、覆盖性良好的固态物质,这种物质形成独钝化立的相,
钝化工艺
这些物质紧密地覆盖在金属表面上成为钝化膜而导致金属钝化,化学钝化则是像浓HNO3等氧化剂直接对金属的作用而在表面形成氧化膜,或加入易钝化的金属如Cr、Ni等而引起的。化学钝化时,加入的氧化剂浓度还不应小于某一临界值,不然不但不会导致钝态,反将引起金属更快的溶解。
当金属溶解时,处在钝化条件下,在表面生成紧密的、覆盖性良好的固态物质,这种物质形成独钝化立的相,称为钝化膜或称成相膜,此膜将金属表面和溶液机械地隔离开,使金属的溶解速度大大降低,而呈钝态。实验证据是在某些钝化的金属表面上,可看到成相膜的存在,并能测其厚度和组成。
如采用某种能够溶解金属而与氧化膜不起作用的试剂,小心地溶解除去膜下的金属,就可分离出能看见的钝化膜,钝化膜是怎样形成的?当金属阳极溶解时,其周围附近的溶液层成分发生了变化。一方面,溶解下来的金属离子因扩散速度不够快(溶解速度快)而有所积累。
吸附理论认为,金属表面并不需要形成固态产物膜才钝化,而只要表面或部分表面形成一层氧或含氧粒子(如O2-或OH-)的吸附层也就足以引起钝化了。这吸附层虽只有单分子层厚薄,但由于氧在金属表面上的吸附,改变了金属与溶液的界面结构,使电极反应的活化能升高,金属表面反应能力下降而钝化。此理论主要实验依据是测量界面电容和使某些金属钝化所需电量。实验结果表明,不需形成成相膜也可使一些金属钝化。
(作者: 来源:)