自抑制法制备PEDOT厚膜和PEDOT/Te点复合薄膜
有机-无机复合热电材料不仅具有有机材料质轻、高延展性、低成本、易制备等优点,而且可以获得比纯有机材料更加优异的热电性能,近年来持续受到热点关注。各种涂层配方均在不同湿膜厚度和表面电阻率的条件下,针对诸如A-PET、PET、聚碳酸酯、玻璃等具体基材经过优化处理。然而,传统的采用原位聚合或机械混合法制得的有机/无机复合热
导电聚合物供应
自抑制法制备PEDOT厚膜和PEDOT/Te点复合薄膜
有机-无机复合热电材料不仅具有有机材料质轻、高延展性、低成本、易制备等优点,而且可以获得比纯有机材料更加优异的热电性能,近年来持续受到热点关注。各种涂层配方均在不同湿膜厚度和表面电阻率的条件下,针对诸如A-PET、PET、聚碳酸酯、玻璃等具体基材经过优化处理。然而,传统的采用原位聚合或机械混合法制得的有机/无机复合热电材料,存在着无机纳米颗粒难分散、易氧化、粒径大小难以控制以及无机相添加量过大(通常>25wt%)等问题,削弱了实际的复合效果,极大地阻碍了有机/无机复合热电材料的进展。
近日,科x院上海硅酸盐研究所研究员陈立东、副研究员姚琴的研究团队在聚3,4-乙烯二氧s吩(PEDOT)基有机/无机复合热电材料领域取得新进展。5%RD9014:4,5-二氮芴-9-酮(DAFO)4,5-Diaza-9H-fluoren-9-oneCAS:50890-67-0DAFO可以替代DFO,99%,。该团队采用新型氧化剂,通过自抑制聚合法,获得了高膜厚无气孔PEDOT:DBSA-Te点复合热电薄膜,相关成果相继发表于NPG Asia Materials,2017,9,405;Angew.Chem.Int.Ed.2018,57,8037–8042,并获得授权一项。
进一步通过调节氧化剂的比例可以控制Te含量和粒径,x粒径可达到点级(<5nm)。终,通过Te点的声子散射机制,在较低的Te添加量下(2.1~5.8 wt%),实现了泽贝克系数和电导率的同时提升,获得了功率因子超过100 mW/mK2的复合薄膜,比纯的PEDOT:DBSA基体提高了50%以上。因此,研究者和商业家应共同努力提高光伏器件的性能,并探求OSC产品柔性化和低成本化的解决方案。该项研究为未来有机-无机复合纳米热电材料制备展示了新的方法和思路。下一步,该团队将探索更多基于此方法的PEDOT基复合材料的合成以及相关器件的制作。
PEDOT-显示器的未来?
—均质处理PEDOT
PEDOT/PSS悬浮液在塑料或玻璃表面,可以形成透明的PEDOT/PSS导电膜,不仅加工处理方便,而且具有可见光透过率高,用量小,抗水解性能好,绿色环保(水基分散体)等优点,使得PEDOT获得了巨大的商业成功,在有机薄膜太阳能电池材料,OLED材料,电致变色材料,透明电极材料等领域有广阔应用前景,在静电屏蔽也有应用。进一步的,上述方案中,所述的钙钛矿光敏层为CH3NH3PbI3、CH3NH3PbI3-xClx、CH3NH3PbBr3、CsPbI3、CsPbI3-xClx、CsPbBr3中的一种。
实验现象:
1.随着均质压力和次数的增加,样品的颜色有一定程度的变浅
2.均质前的沉淀物,均质之后静置后样品状态稳定不沉淀
3.均质处理后,样品温度会略微升高,此时在试管中的流动状态仍为液体。静置后温度降低,“粘壁”现象会较为明显。
原位聚合法不需要特殊设备、操作简单、膜厚可控、可涂布于各种形状的表面,尤其对找不到合适溶液的导电聚合物和某些特殊表面具有优势,且聚合方式种类多样,合成PEDOT薄膜的全过程中可通过掺杂改变聚合物结构,获得的聚合物电导率高、应用前景广阔,是制备PEDOT薄膜对电极新的趋势。原位聚合法原位聚合法是将单体或可溶性预聚体在基材表面聚合形成导电聚合物膜,主要包括直接聚合法、溶液聚合吸附法、化学气相沉积法、气相沉积聚合法、液相沉降聚合法。 与以往传统的和碳对电极相比,PEDOT具有高电导率、透明性以及柔性等优点。三种薄膜制备方法各有优缺点,促进了PEDOT薄膜对电极的发展,也使得DSSC取得了巨大的进步。
由于导电高分子聚(3,4-亚二氧噻吩):聚磺酸(PEDOT:PSS)具有良好的生物相容性、高导电性和水稳定性,近年来在各种功能器件中被广泛应用。研究发现,PEDOT:PSS可直接开发出与人体接触的软生物电子器件,因为其固有柔性优于无机材料。进一步的,上述方案中,所述的电子传输层为C60、C70、PCBM中的一种,作为改进,在制备电子传输层上继续制备一层Bphen、BCP、AlQ3中的一种作为电极修饰层。但是大多数生物电子设备仍然依赖于薄膜形式的PEDOT:PSS,而它们在物理和力学上均与生物组织不同。因此,建立具有类组织特性的基于PEDOT:PSS的生物电子界面,将极大地促进其在软生物电子领域的应用。
(作者: 来源:)