人工智能控制器
STEAC决策机TM,是采用人工智能深度学习技术,对换热站和锅炉房进行智能化控制的AI软硬件一体化产品,无需更换站内设备,无需增加布线施工,无需进行软件升级,只需一台智能决策机TM,便可完成换热站和锅炉房的智能化升级改造!STEAC决策机TM是硕人时代自主研发的边缘计算设备,内置操作系统,基于人工智能AI深度学习模型
不同的人工智
供热智能化价格
人工智能控制器
STEAC决策机TM,是采用人工智能深度学习技术,对换热站和锅炉房进行智能化控制的AI软硬件一体化产品,无需更换站内设备,无需增加布线施工,无需进行软件升级,只需一台智能决策机TM,便可完成换热站和锅炉房的智能化升级改造!STEAC决策机TM是硕人时代自主研发的边缘计算设备,内置操作系统,基于人工智能AI深度学习模型
不同的人工智能控制通常用完全不同的方法去讨论。但AI控制器例如:神经、模糊、模糊神经,以及遗传算法都可看成一类非线性函数近似器。这样的分类就能得到较好的总体理解,也有利于控制策略的统一开发。这些AI函数近似器比常规的函数估计器具有更多的优势,它们的设计不需要控制对象的模型(在许多场合,很难得到实际控制对象的动态方程,实际控制对象的模型在控制器设计时往往有很多不确实性因素,例如:参数变化,非线性时,往往不知道)。
也有一些的文章论述运用模糊逻辑控制感应电机的磁通和力矩。它的输入标定因子是变化的。实验结果也验证了所提方案的有效性。该系统中模糊速度控制器与常规的PI速度控制器和CRPWM塑变器一起使用,它往往用来补偿可能的惯性和负载转矩的扰动。神经网络的应用 现如今,有大量文章讨论神经网络在交流电机和驱动系统的条件监测和诊断中的运用。
使用常规反向转波算法的ANN用于步进电机控制算法的优化。该方案使用实验数据,根据负载转矩和初始速度来确定大可观测速度增量。这就需要ANN学习三维图形映射。该系统与常规控制算法(梯形控制法)相比具有更好的性能,并且大大减少了定位时间,对负载转矩的大范围变化和非初始速度也有满意的控制效果。
(作者: 来源:)