质谱仪zui重要的应用是分离同位素并测定它们的原子质量及相对丰度。测定原子质量的精度超过化学测量方法,大约2/3以上的原子的质量是用质谱方法测定的。质谱方法还可用于有机化学分析,特别是微量杂质分析,测量分子的分子量,为确定化合物的分子式和分子结构提供可靠的依据。火花源质谱仪不仅可以进行固体样品的整体分析,而且可以进行表面和逐层分析甚至液体分析;激光探针质谱仪可进行表面和纵深分析;辉
质谱仪zui重要的应用是分离同位素并测定它们的原子质量及相对丰度。测定原子质量的精度超过化学测量方法,大约2/3以上的原子的质量是用质谱方法测定的。质谱方法还可用于有机化学分析,特别是微量杂质分析,测量分子的分子量,为确定化合物的分子式和分子结构提供可靠的依据。火花源质谱仪不仅可以进行固体样品的整体分析,而且可以进行表面和逐层分析甚至液体分析;激光探针质谱仪可进行表面和纵深分析;辉光放电质谱仪分辨率高,可进行高灵敏度,分析。

质谱仪的性能指标是它的分辨率,如果质谱仪恰能分辨质量m和m+Δm,分辨率定义为m/Δm。现代质谱仪的分辨率达 105 ~106 量级,可测量原子质量到小数点后7位数字。质谱仪真空泵的保养方法,检查和清洁前置真空泵入口过滤器,旋开入口转接器,取下‘O’ ring,弹性挡圈和入口过滤器。质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。

传输离子时,简单来说可以认为传输效率与被传输离子的量无关;(严格地说,被传输的离子太多时,相同电荷的互相排斥会造成离子束的“体积”变大,导致传输效率下降。这种影响在空间有限的离子阱中表现得更加明显,因此在离子阱质谱中一个重要的技术就是适当控制进入仪器的离子数量,使其既不太少也不太多。)检测离子时,不论是使用光电倍增管的检测器,还是检测镜像电流的检测器(ICR/Oribtrap),其信号强度(在一定范围内)均与离子数量大致线性相关。
(作者: 来源:)