在柔性PV中,的FTE是金属掺杂的金属氧化物(Metal doped metal oxide,MMO),例如铟掺杂的氧h锡(ITO)。然而,ITO在塑料基板上存在机械脆性和导电性差问题;另外,通过高温真空溅射法制备MMO,使得MMO价格昂贵,且与印刷和卷对卷不兼容。作为MMO的替代物,聚(3,4-亚二氧s吩):聚(b乙x磺酸)(PEDOT:PSS)薄膜的成本相对较低,并且具有高
导电聚合物公司
在柔性PV中,的FTE是金属掺杂的金属氧化物(Metal doped metal oxide,MMO),例如铟掺杂的氧h锡(ITO)。然而,ITO在塑料基板上存在机械脆性和导电性差问题;另外,通过高温真空溅射法制备MMO,使得MMO价格昂贵,且与印刷和卷对卷不兼容。作为MMO的替代物,聚(3,4-亚二氧s吩):聚(b乙x磺酸)(PEDOT:PSS)薄膜的成本相对较低,并且具有高的光学和电学特性,优异的热稳定性,良好的柔韧性等。在前期的工作中,我们报道了高温甲磺酸方法和转移PEDOT:PSS方法,基于P3HT:PCBM和PBDTT-S-TT:PC71BM柔性OSC分别表现了3.92%[1]和6.42%[2]的能量转换效率(PCE)。这种OSC器件的PCE和机械柔性有待进一步加强。进一步的,上述方案中,所述的透明导电衬底为沉积有ITO、FTO、AZO的玻璃衬底或者柔性衬底。
PSS在ITO基片上旋涂作为空穴传输层,并且在旋涂PEDOT∶PSS的过程中在与ITO玻璃平面垂直的方向施加一个诱导聚合物取向的高压电场,试验着重研究了所加电场强度对双层器件:ITO/PEDOT∶PSS/MEH-PPV/Al器件性能的影响。测试结果表明,旋涂时所加电场的大小对器件的发光强度和起亮电压都有明显的影响。随着所加电场的增大,器件发光强度明显增加,起亮电压减小。由此表明:在高电场作用下,聚合物分子链沿电场方向发生了取向,而且随着电场增强这种取向作用会表现得越明显,并且在PEDOT∶PSS膜表层会形成一个梯度变化的PSS聚集,使得从ITO到MEH-PPV的功函数逐渐上升,降低空穴注入势垒,增强了空穴的注入效率。利用PEDOT:PSS/AgNW/PDMS的包覆结构以及界面之间强的粘附性,提高器件结构的稳固性,这有利于提高应变响应的可靠性。
柔性钙钛矿太阳能电池机械力学稳定性:(A) 柔性电池模组在不同曲率半径弯折的照片。(B) 柔性电池在不同曲率半径下弯折300次后的光电转换效率。可合成各种导电性聚合物并制备各种结构、性质不同的功能膜,还可在单体聚合的同时进行掺杂。(C) 在3 mm曲率半径下,柔性电池弯折5000次后的光电转换效率。(D) 在3mm曲率半径下,不同有效面积的柔性电池弯折后光电转换效率。
他们进一步测试了柔性电池的长时间稳定性。因为器件同时采用PEDOT:PSS作为电极和空穴界面层,避免了界面层PEDOT:PSS对于ITO电极的酸性腐蚀。封装器件经过180天测试后,仍具有80%初始光电转换效率。采用锥状硅纳米洞结构,并通过调控其孔径和深度,实现PEDOT:PSS对硅很好地包覆和对光的充分利用。器件的稳定性也通过飞行时间二次离子质谱进行了深入研究。PEDOT:PSS:CFE电极克服了PEDOT:PSS的吸湿性问题,从而减缓钙钛矿器件的离子扩散,提高了稳定性。
(作者: 来源:)