此外,平版印刷油墨在使用某些氨基酯时也会存在问题,因为它们可能会与酸性润版液发生反应,并且还会破坏水墨平衡。通过应用II型光引发剂,氨基酯可以充分发挥其作用。II型光引发剂(苯甲酮)和胺类的光吸收反应如图所示。其他II型光引发剂是吨酮和蔥醌类。在大多数的配方中,添加光引发剂旨在保护其表面和实现完全固化。氨基酯的反应性可能会因不同的胺含量和双键浓度而产生差异。氢离子数量及其可转化率(空间位阻)也
可见光引发剂总代理
此外,平版印刷油墨在使用某些氨基酯时也会存在问题,因为它们可能会与酸性润版液发生反应,并且还会破坏水墨平衡。通过应用II型光引发剂,氨基酯可以充分发挥其作用。II型光引发剂(苯甲酮)和胺类的光吸收反应如图所示。其他II型光引发剂是吨酮和蔥醌类。在大多数的配方中,添加光引发剂旨在保护其表面和实现完全固化。氨基酯的反应性可能会因不同的胺含量和双键浓度而产生差异。氢离子数量及其可转化率(空间位阻)也影响氨基酯的反应性。
在相同的光学密度下, 用nmUVLED灯固化柔印油墨比用nm UV LED灯的固化速度快。|结论|在现有的PI浓度下, 酰胺可以增加UVLED 的固化速度, 或在降低PI浓度的情况下, 保持UVLED的固化速度。 AA是研究OPVs和柔印油墨中的酯胺。 针对UVLED可固化OPV制剂, 我们已确定一种低黄变的PI包。 该PI包可用于食品包装。 低迁移AA是此制剂的一部分。柔印油墨的UVLED的固化很大程度上与油墨的厚度呈现相关性。 酯胺(AA)浓度的增加可实现低膜厚的柔印油墨的完全固化。 借助nm、 wattcmUV LED灯实现固化的柔印油墨比借助 nm、 wattcmUV LED灯的固化速度快。借助nm、 UVLED灯固化的柔印油墨,对几种薄膜基材有较好的附着力, 说明固化效果良好。
同PMKPG和PMKPP相比,PKMPR具有更加刚性的链结构,这让PMKPR在光聚合反应时的移动性受到限制,从而使得其光引发的效率更差。另一方面,PMKPR和AMP-G的相容性较差,这使得其光聚合效率在三个光引发剂中效率。对于PMKPG和PMKPP,由于PEO和PPO短链的存在,聚合链更加柔韧,这使得其和AMP-G的相容性更好,以及聚合链具有更好的移动性,从而导致PMKPG和PMKPP对于AMP-G的聚合效率更高。图 采用PMKPR,PMKPG和PMKPP在℃下采用mWcm光强对A-BPE-进行引发的(a) PhotoDSC 图谱,(b) 反应速率vs.转化率图,和(c)转化率vs.时间图 (以米蚩酮单元计算的浓度为.M)
(作者: 来源:)