设计并研究了一种量程可调式磁性液体微压差传感器。该传感器外壳为玻璃管,管内中间放置一个圆柱形永磁体,永磁体两端吸附磁性液体。两个环形永磁体固定在玻璃管内的两端,为中间永磁体提供回复力。转换元件采用霍尔元件,通过滑动支架可以改变霍尔元件的测量位置,进而实现多量程测量。对传感器各项性能参数进行了理论推导和有限元分析,并基于Pareto解对各项参数进行了优化,结果表明优化后传感器的灵敏度
液压滚圆机
设计并研究了一种量程可调式磁性液体微压差传感器。该传感器外壳为玻璃管,管内中间放置一个圆柱形永磁体,永磁体两端吸附磁性液体。两个环形永磁体固定在玻璃管内的两端,为中间永磁体提供回复力。转换元件采用霍尔元件,通过滑动支架可以改变霍尔元件的测量位置,进而实现多量程测量。对传感器各项性能参数进行了理论推导和有限元分析,并基于Pareto解对各项参数进行了优化,结果表明优化后传感器的灵敏度和量程有所增大,而尺寸减小。
对传感器在三种量程下的输出电压与待测压强关系进行了和实验分析,求得传感器的灵敏度,后对传感器的动态性能进行理论和分析,结果表明优化后传感器的动态性能提升,验证了本设计的可行性。,两霍尔元件检测到的电压信号相同,桥式电路的输出信号为0。当磁性液体微压差传感器左右两端通入不同大小的压力P1和P2时(假设P1>P2),传感器优化设计-液压电动滚圆机滚弧机数控滚圆机张家港全自动滚圆机滚弧机折弯机中间永磁体沿着轴线方向向右移动Δx,引起壳体外部空间的磁场发生变化,固定在壳体表面上的两个霍尔元件感应到此变化,并输出电压信号ΔU[7],且ΔU随着Δx的变化而变化。
不同粒度硅砂对高应变点玻璃熔制质量的分析图1和图2分别为不同粒度硅砂配合料熔制(熔制温度1400℃)的高应变点玻璃样品的显微镜图像和样品未熔物及气泡分析图。从图1和图2中可明显看出,未筛分的硅砂熔制出的高应变点玻璃样品中的未熔物,筛分后的硅砂熔制出的玻璃样品随硅砂目数的增大,未熔物逐渐减少,而气泡数量呈逐渐增多的趋势。

主要原因在于硅砂目数小于100目时,硅砂粒度较大,玻璃形成硅酸盐熔体的时间长,从而呈现样品中未熔物多、气泡少的现象;而当硅砂目数大于150目时,样品中未熔物量少,但气泡直径小且量多,这是由于在高温下,硅砂的粒径越小,其与纯碱反应速度越快,形成了硅酸钠,其反应式为N加速了硅砂的熔化在一定时间和一定温度下澄清效果的影响-数控滚圆机滚弧机折弯机张家港倒角机液压滚圆机滚弧机折弯机倒角机,玻璃液的黏度大,气泡难以逸出,形成小而多的气泡。

(作者: 来源:)