碱性磷酸酶(ALP或AKP)是广泛分布于人体肝1脏、骨骼、肠、shen和胎1盘等组织经肝1脏向胆外排出的一种酶。这种酶能催化核酸分子脱掉5’磷酸基团,从而使DNA或RNA部分片段的5’-P末端转换成5’-OH末端。但它不是单一的酶,而是一组同功酶。目前已发现有AKP1、AKP2、AKP3、AKP4、AKP5与AKP6六种同功酶。其中第yi、2、6种均来自肝1脏,第3种来自骨细胞
随机引物
碱性磷酸酶(ALP或AKP)是广泛分布于人体肝1脏、骨骼、肠、shen和胎1盘等组织经肝1脏向胆外排出的一种酶。这种酶能催化核酸分子脱掉5’磷酸基团,从而使DNA或RNA部分片段的5’-P末端转换成5’-OH末端。但它不是单一的酶,而是一组同功酶。目前已发现有AKP1、AKP2、AKP3、AKP4、AKP5与AKP6六种同功酶。其中第yi、2、6种均来自肝1脏,第3种来自骨细胞,第4种产生于胎1盘及癌细胞,而第5种则来自小1肠绒毛上皮与成纤维细胞。

据研究表明RNA聚合酶拥有现代蛋白质聚合酶的许多特征,它可以进化从而识别出RNA启动子,然后copy RNA。研究意味着,生命进化早期出现的同样的RNA酶也可能表现出如此复杂的生物学特征。
有证据表明,RNA先于DNA和蛋白质出现。例如,人体细胞内制造蛋白质的“机器”核糖体就由RNA制造而成。此外,DNA也由RNA组成。由于RNA是一种万1能工具,可以同时发挥蛋白质和DNA的功能,这表明后来进化出现的DNA和蛋白质是一种“升级”,以增强起初由RNA支持的细胞功能。昂劳实验室发现的聚合酶表明,RNA copy在原始生命体内确实可能存在。
DNA新链的延伸由DNA聚合酶 III所催化。为了copy的不断进行,解旋酶须沿着模板前进, 边移动边解开双链。由于DNA的解链,在DNA双链区势必产生正超螺旋,在环状DNA中更为明显,当达到一定程度后就可能造成copy叉难以再继续前进,但在细胞内DNA的copy不会因出现拓扑学问题而停止,因为拓扑异构酶会解决这一问题。
随着引发体合成RNA引物,DNA聚合酶 III开始不断地将引物延伸,合成DNA。DNA聚合酶 III是一个多亚基复合二聚体,一个单体用于前导链的合成,另一个单体用于滞后链的合成,因此它可以在同一时间分别copyDNA前导链和滞后链。虽然DNA前导链和滞后链copy的方向不同,但如果滞后链模板环绕DNA聚合酶III,并通过DNA聚合酶 III,然后再折向未解链的双链DNA的方向,则滞后链的合成可以和前导链的合成在同一方向进行。

自身引导法 。合成的单链eDNA3’端能够形成一短的发夹结构,这就为第二链的合成提供了现成的引物。当链合成反应产物的DNA—RNA杂交链变性后利用大肠DNA聚合酶I Klenow片段或反转录酶合成eDNA第二链,用对单链特异性的S1核酸酶消化该环,即可进一步。但自身引导合成法较难控制反应,而且用S1核酸酶切割发夹结构时无一例外地将导致对应于mRNA5’端序列出现缺失和重排,因而该方法很少使用。
(作者: 来源:)