红外光显微镜在生物学中的应用范围是有限的。当用可见光观察不透明的某些物体时,在较溉的红外光区域就会变得透明,这种效应已经被用于研究在某些昆虫中发现的渗入黑色素的甲壳质层。但是,某些有机物质在2-30微米波长范围内的吸收特性实际上并没有应用到生物学物质的定性和定量的显微研究中,除了仪器和像的记录问题而外,也由于在这种波长范围内分辨力的损失已经变得十分引人注目。一个数值孔径为0.6物镜
超声检测系统
红外光显微镜在生物学中的应用范围是有限的。当用可见光观察不透明的某些物体时,在较溉的红外光区域就会变得透明,这种效应已经被用于研究在某些昆虫中发现的渗入黑色素的甲壳质层。但是,某些有机物质在2-30微米波长范围内的吸收特性实际上并没有应用到生物学物质的定性和定量的显微研究中,除了仪器和像的记录问题而外,也由于在这种波长范围内分辨力的损失已经变得十分引人注目。一个数值孔径为0.6物镜的小分辨距离大约与所使用的光线的波长是相等的,这就意味着使用一个这样孔径的反射物镜,以波长为10μm的红外光观察一个直径为10μm左右的细胞几乎是不可能的。

超声扫描显微镜 新一代的超声测试设备,可在生产线中用手工扫描方法来检测器件的缺陷等。该设备可利用不同材料对超声波声阻抗不同,对声波的吸收和反射程度不同,来探测半导体、元器件的结构、缺陷、对材料做定性分析。的声学显微成像( AMI )的技术是诸多行业领域在各类样品中检查和寻找瑕疵的重要手段。在检查材料本身或粘结层之间必须保持完整的样品时,这项技术的优势尤为突出。超高频超声检查可以比其他任何方法都更有效地检测出脱层,裂缝,空洞和孔隙。

微光显微镜emmi检测和emmi分析解说
通常第三方检测实验室用户对emmi检测需要了解哪些内容呢?首先在分析故障的时候利用微光显微镜,它的主要特点是效率非常高,主要侦测IC内部所发射出来的光子,在检测芯片的时候由于电子很容易扩散到的位置。所以做emmi检测通常是非常有必要的。它的主要优势就是通过产生亮点的缺陷,能够接处毛刺从而有效的进行分析,可以检测不到亮点的情况,然后进行排除。同时利用光诱导的电阻变化能够准确的,对于IC元件的短路,或者是互联当中所出现的空洞来进行检测,这样才会更加的。

(作者: 来源:)