真空热处理
真空热处理即真空技术与热处理两个相结合的综合技术,是指热处理工艺的全部和部分是在真空状态下进行的。真空热处理几乎可实现全部热处理工艺,如淬火、退火、回火、渗碳、渗铬、氮化,在淬火工艺中可实现气淬、油淬、硝盐淬火、水淬等,它与普通热处理相比较具有以下优点。☆复杂性MIM工艺适合制造几何形状复杂的以及在切削加工中需要转换位置的多轴零件。
1、不氧化、不脱碳、不增碳对工件内部和表
粉末冶金公司
真空热处理
真空热处理即真空技术与热处理两个相结合的综合技术,是指热处理工艺的全部和部分是在真空状态下进行的。真空热处理几乎可实现全部热处理工艺,如淬火、退火、回火、渗碳、渗铬、氮化,在淬火工艺中可实现气淬、油淬、硝盐淬火、水淬等,它与普通热处理相比较具有以下优点。☆复杂性MIM工艺适合制造几何形状复杂的以及在切削加工中需要转换位置的多轴零件。
1、不氧化、不脱碳、不增碳对工件内部和表面有良好的保护作用
2、提高整体机械性能、脱气和促进金属表面的净化作用
3、工件变形小
4、可减少工件含金元素挥发性
5
真空热处理炉热,可实现升温和降温;稳定性和重复性好。工作环境好,操作安全,没有污染和公害。

金属粉末注射成型工作原理
金属粉末注射成型技术的工作原理金属粉末注射成型技术是将现代塑料喷射成形技术引入粉末冶金领域而形成的一门新型粉末冶金近净形成形技术。
其基本工艺过程是:首先将固体粉末与有机粘结剂均匀混练,经制粒后在加热塑化状态下(~150℃)用喷射成形机注入模腔内固化成形,然后用化学或热分解的方法将成形坯中的粘结剂脱除,经烧结致密化得到终产品。
金属粉末注射成型技术工艺与传统工艺相比,具有精度高、组织均匀、性能优异,生产成本低等特点,其产品广泛应用于电子信息工程、生物医用器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵工及航空航天等工业领域。因此,国际上普遍认为该技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“当今热门的零部件成形技术”和“21世纪的成形技术”。吸热型气氛与放热型气氛相比较,是一种还原性更强、碳势更高的可控气氛,在粉末冶金中主要用于铁基零件和铜基零件烧结时作保护气氛,有时也作为渗碳剂使用。

达克罗技术的优缺点
优点
1.高耐热性:达克罗可以耐高温腐蚀,耐热温度可达300℃以上。而传统的镀锌工艺,温度达到100℃时就已经起皮报废了。
2.很好的耐蚀性能:达克罗膜层的厚度仅为4-8μm,但其防锈效果却是传统电镀锌、热镀锌或涂料涂覆法的7-10倍以上。采用达克罗工艺处理的标准件、管接件经耐盐雾试验1200h以上未出现红锈。
3.良好的渗透性:由于静电屏蔽效应,工件的深孔、狭缝,管件的内壁等部位难以电镀上锌,因此工件的上述部位无法采用电镀的方法进行保护。达克罗则可以进入工件的这些部位形成达克罗涂层。
4.无氢脆性:达克罗的处理工艺决定了达克罗没有氢脆现象,所以达克罗非常适合受力件的涂覆。5.结合力及再涂性能好:达克罗涂层与金属基体有良好的结合力,而且与其他附加涂层有强烈的粘着性,处理后的零件易于喷涂着色,与有机涂层的结合力甚至超过了磷化膜。金属喂料的生产是金属注射成形行业不可或缺的组成部分,因为工艺技术要求注射原料必须为一定大小的均匀颗粒,而不能直接使用粉末。
缺点1.达克罗的烧结温度较高、时间较长,能耗大。
2.达克罗涂层的导电性能不是太好,因此不宜用于导电连接的零件,如电器的接地螺栓等。
3.达克罗中含有对环境和人体有害的铬离子,尤其是六价铬离子具有致癌作用。
4.达克罗涂层的表面颜色单一,只有银白色和银灰色,不适合汽车发展个性化的需要。不过,可以通过后处理或复合涂层获得不同的颜色,以提高载重汽车零部件的装饰性和匹配性。
5.达克罗的表面硬度不高、性不好,而且达克罗涂层的制品不适合与铜、镁、镍和不锈钢的零部件接触与连接,因为它们会产生接触性腐蚀,影响制品表面质量及防腐性能。



我国近十年来粉末冶金成形新技术综述
粉末冶金是一项集材料制备与零件成形于一体,节能、节材、高效、终成形、少污染的制造技术,在材料和零件制造业中具有的地位和作用,已经进入当代材料科学的发展前沿。
目前粉末冶金技术正向着高致密化、化、低成本方向发展,本文着重介绍几种近十年来粉末冶金零件的成形新技术。
一、温压技术
温压技术是粉末冶金领域近几年发展起来的一项新技术,可生产出高密度、高强度,具有非常广泛的应用前景。总需求量:模具费和研发费用对于低需求量的产品,分摊下来后是很难以承受的。所谓温压技术就是采用te制的粉末加温、粉末输送和模具加热系统,将加有特殊润滑剂的预合金粉末和模具等加热至130~150℃,并将温度波动控制在±2.5℃以内,然后和传统粉末冶金工艺一样进行压制、烧结而制得粉末冶金零件的技术。其技术关键:一是温压粉末制备,二是温压系统。
与传统工艺相比,温压成形的压坯密度约有0.15~0.30g/cm3的增幅,其密度可达7.45g/cm3。在相同的压制压力下,温压材料的屈服强度比传统工艺平均高11%,极限拉伸强度平均高13.5%,冲击韧性可提高33%。运用该技术可直接生产多孔、半致密或全致密的材料和制品,因此应用十分广泛。另外,温压零件的生坯强度高,可达2O~30MPa,比传统方法提高50—100%,不仅降低生坯搬运过程中的破损率而且能对生坯进行机加工,表面光洁度好。此外,温压工艺的压制压力低和脱模力小,同时零件性能均一,产品精度高,材料利用率高。
温压工艺还有一个特点是工艺简单,成本低廉。研究表明,假如一次压制、烧结的普通粉末冶金工艺的成本为1.0,则粉末锻造的相对成本为2.0,复压复烧的相对成本为1.5,渗铜的相对成本为1.4,而温压技术的相对成本为1.25。因为体心立方晶格的a-Fe总的间隙量虽大,但是间隙半径却很小,所以碳在a-Fe中的溶解度很小,室温下不超过0。目前,采用温压技术生产的粉末冶金零件已达200多种,零件重量在5—1200g。例如,德国SinterstahlGmbH公司用温压技术生产复杂的摩擦传动用同步齿环,在美国新奥尔兰举行的PM2TEC2001国际会议上获奖。该零件的齿部密度超过7.3g/cm,环体密度超过7.1g/cm,生坯强度达到28MPa。采用了扩散合金化的烧结硬压粉末,zui低抗拉强度为850MPa。由于使用了温压技术和采用粉末冶金零件,使得综合成本降低了38%。
二、流动温压技术
流动温压技术(Warm Flow Compaction,简称WFC)是在粉末压制、温压成形工艺的基础上,结合了金属粉末注射成形工艺的优点而提出来的一种新型粉末冶金零部件近净成形技术。其关键技术是提高混合粉末的流动性。若材料难以切削加工,诸如工具钢、钛、镍合金或不锈钢,对于MIM终成型来说,是有利的,MIM工艺可以一次性成型复杂的几何形状特征。它通过提高了混合粉末的流动性、填充能力和成形性,从而可以在8O~130~C温度下,在传统压机上精密成形具有复杂几何外形的零件,如带有与压制方向垂直的凹槽、孔和螺纹孔等零件,而不需要其后的二次机加工。WFC技术既克服了传统粉末冶金在成形复杂几何形状方面的不足,又避免了金属注射成形技术的高成本,是一项极具潜力的新技术,具有非常广阔的应用前景。
WFC技术作为一种新型的粉末冶金零部件近净成形技术,其主要特点如下:(1)可成形具有复杂几何形状的零件;(2)压坯密度高、密度均匀;(3)对材料的适应性较好;(4)工艺简单,成本低。
-->