从车牌识别发展过程来看,车牌识别技术在应用中所要面临两个方面的挑战。
1、人为挑战:车速、车牌对车牌识别的挑战
道路监控同时也面临另一不可控制的因素——行驶车辆的速度不一。即使在一般道路上,依据不同驾驶的驾驶习惯,时速差距往往可以达到30公里,甚至40公里;而当车速过快时,往往也会产生拖影的问题。因此摄像机的快门速度和帧率必须赶上车辆的移动,才能掌握车辆
福州车牌识别
从车牌识别发展过程来看,车牌识别技术在应用中所要面临两个方面的挑战。
1、人为挑战:车速、车牌对车牌识别的挑战
道路监控同时也面临另一不可控制的因素——行驶车辆的速度不一。即使在一般道路上,依据不同驾驶的驾驶习惯,时速差距往往可以达到30公里,甚至40公里;而当车速过快时,往往也会产生拖影的问题。因此摄像机的快门速度和帧率必须赶上车辆的移动,才能掌握车辆的细节以及车牌号码,再让辨识系统进行辨认。
除了车速难以掌控以外,车牌的不统一性也是令各家监控厂商的问题。不论是英文字母的字数不同,或是各式排列不一的组合方式,皆增加了辨识系统的负担;更甚者,许多驾驶未能维持车牌的干净度,时常会有污渍遮蔽号码或是破损的问题,辨识难度不言可喻。故在各种严苛条件的综合下,道路监控与车牌辨识相对门坎比一般环境来得具挑战性。
车牌识别的技术参数介绍
车牌识别该系统采用车牌识别系统开发研制而成,它将计算机视觉技术、神经网络系统技术、机械、电子自动化设备、计算机以及智能卡技术有机的结合起来,从而对各类出入车辆进行有效的管理。通过车牌号判断是否内车辆,道闸自动开启。外部车辆驶入需要人工确认。黑名单比对,提示报警和车辆流量统计功能。采用的大型数据库软件Microsoft SQL Server 2000。操作界面统一,全程在线帮助,的兼容性。车牌自动识别,实时监视,报表。
车牌识别的技术参数:
1、夜间整牌识别率在 87~95%之间(与光照条件有关);
2、 图像彩色等级: 24位真彩色
3、平均无故障持续运行时间 MTBF≥30000小时。
4、日间整牌识别率≥ 95% ;
5、允许车辆行驶速度:0~235公里/小时
6、识别时间小于 0.3秒/辆次 ;
7、 图像灰度等级: 256级,
8、抓拍图片分辩率:768*576、720*576、704*576
9、车牌识别系统(车牌率> 99.9% ;
,在开发 LPR 算法之前,要确定算法的目的和要求。LPR 算法的终目的是识别车辆的车牌号码,所以识别正确率自然是系统设计中应该首要考虑的因素。影响识别正确率的因素有很多,主要的有以下几点:一是定位的准确性;二是识别前字符的预处理;三是字符识别的算法。为了提高识别正确率,需要对现有的车牌字符识别算法进行改进,在后面的章节中会有详细的介绍。
其次,LPR 算法在工作时需要实时处理交通流量信息,所以系统的工作效率——即识别时间也是系统设计时必须要考虑的因素,一般要求在 1s 内能够完成识别,这就要求识别算法的复杂度、运算量不能太大。
除了算法识别正确率和识别时间外,算法软件的操作界面应尽量简单、友好,还要考虑系统的无故障运行时间,系统体积的大小等因素。,算法设计要面向现场、面向终端客户的需求,考虑到 LPR 系统在户外工作,所以要克服外面环境的复杂性及光照条件的变化,设计出一套适应性较强的算法。
(作者: 来源:)