随着数据库应用领域的进一步拓展与深入,传统的数据模型已逐渐不能满足实际工作对数据处理的需要。而对象数据、空间数据、图像与图形数据、声音数据、关联文本数据及海量仓库数据等出现,传统数据库在建模、语义处理、灵活度等方面都无法适应。为满足发展需要,数据模型向多样化发展,主要表现在以下几方面。
1、传统关系模型的扩充
2、面向对象数据模型
3、XML数据模型
4、发展出新的数据模型
物联云定制
随着数据库应用领域的进一步拓展与深入,传统的数据模型已逐渐不能满足实际工作对数据处理的需要。而对象数据、空间数据、图像与图形数据、声音数据、关联文本数据及海量仓库数据等出现,传统数据库在建模、语义处理、灵活度等方面都无法适应。为满足发展需要,数据模型向多样化发展,主要表现在以下几方面。
1、传统关系模型的扩充
2、面向对象数据模型
3、XML数据模型
4、发展出新的数据模型
数据模型按不同的应用层次分成三种类型:
1、概念模型
一种面向用户、面向客观世界的模型,主要用来描述世界的概念化结构,它是数据库的设计人员在设计的初始阶段,摆脱计算机系统及DBMS的具体技术问题,集中精力分析数据以及数据之间的联系等。
2、逻辑模型
一种面向数据库系统的模型,具体的DBMS所支持的数据模型。此模型既要面向用户,又要面向系统,主要用于数据库管理系统(DBMS)的实现。
3、物理模型
一种面向计算机物理表示的模型,描述了数据在储存介质上的组织结构。每一种逻辑数据模型在实现时都有其对应的物理数据模型。DBMS为了保证其独立性与可移植性,大部分物理数据模型的实现工作由系统自动完成。

建立模型的步骤:
三、建立模型
在准备好的数据基础上,建立数据模型,这种模型可能是机器学习模型,也可能不需要机器学习等高深的算法。选择什么样的模型,是根据要解决的问题(目标)确定的。
当然可以选择两个或以上的模型对比,并适当调整参数,使模型效果不断优化。
四、模型评估
模型效果的评估有两个方面:一是模型是否解决了需要解决的问题(是否还有没有注意和考虑到的潜在问题需要解决);二是模型的准确性(误差率或者残差是否符合正态分布等)。
如:在识别KOL假粉的问题中,需要评估的是:模型能否识别出假粉?识别的误差率是多少?粉丝识别误差率=(假粉误认为真粉的数量+真粉误认为假粉的数量)/总粉丝数
数据建模步骤
结果呈现
结果呈现主要关注以下三个方面:模型解决了哪些问题?解决效果如何?如何解决问题?具体操作步骤是什么?
模型部署
通过大量数据解决了一个或多个重要的现实问题,需要将方案落实下去,一般情况下需要通过线上技术环境部署落实,从而为后面不断优化模型、更好地解决问题打下基础。
交由工程人员部署技术环境,需要数据建模团队撰写需求文档,并确保工程人员理解需求文档的内容,才能达到较好的模型部署效果。
(作者: 来源:)