基于交流放电的叶尖间隙测量系统,包括交流数控可调激励、放电探针、电流测量转换模块和数据处理模块,放电探针的一端与机匣的内壁相平齐,另一端露在机匣的外部,且放电探针插入机匣的部分包裹绝缘层;间隙高度对泄漏流流动换热特性影响较显著,随间隙高度增加泄漏流量线性增加,气动效率线性降低,泄漏总压损失系数增大,换热系数增加。交流数控可调激励的高压端连接放电探针,阴极通过电流测量转换模块连接
天津叶片振动测量
基于交流放电的叶尖间隙测量系统,包括交流数控可调激励、放电探针、电流测量转换模块和数据处理模块,放电探针的一端与机匣的内壁相平齐,另一端露在机匣的外部,且放电探针插入机匣的部分包裹绝缘层;间隙高度对泄漏流流动换热特性影响较显著,随间隙高度增加泄漏流量线性增加,气动效率线性降低,泄漏总压损失系数增大,换热系数增加。交流数控可调激励的高压端连接放电探针,阴极通过电流测量转换模块连接转子叶片的中心,电流测量转换模块经由数据处理模块连接交流数控可调激励的控制端,用以控制交流数控可调激励的输出电压大小和有无。测量方法是首先绘制放电起始电压与叶尖间隙的关系曲线,然后测量待测转子叶片的放电起始电压,根据关系曲线找到对应的叶尖间隙数值,即为待测转子叶片的叶尖间隙。其实用性强,安装使用方便,操作简单,调压时间短且效率。
GSK980TD车床控制系统为例
反向间隙参数调整
以广数GSK980TD车床控制系统为例。测量前先把X与Z方向的反向间隙数值清 零,操作方法:按面板上的“设置”→ 按字母“L”把参数开关变为 “开”,→按“录入”→按“参数”→按翻页键 找到 034(035),移动箭头使光标在034(X方向反向间隙补偿)或035 (Z方向反向间隙补偿)中→ 输入“0”→ 按“输入”即可把034与 035参数清零。修改完成后,按面板上的“设置”→ 按字母“W”把参数开关变为“关”。在10%轴向弦长之后毫米尺度微叶栅拟S3截面平均总压损失大于常规尺度叶栅,且60%轴向弦长之后平均总压损失急剧上升,远超常规尺度叶栅。

数控机床反向间隙数值较小,对加工精度影响不大则不需要采取任何措施
在数控机床的进给传动链中,联轴器、滚珠丝杆、螺母副、轴承等均存在反间间隙。机床进给轴在换向运动的时候,在一定的角度内,尽管丝杆转动,但是丝杆螺母副还要等间隙消除以后才能带动工作台运动,这个间隙就是反向间隙。
对于采用半闭环控制的数控机床,反向间隙会影响到定位精度和重复定位精度。反向间隙数值较小,对加工精度影响不大则不需要采取任何措施; 若数值过大,则系统的稳定性明显下降,加工精度明显降低,尤其是曲线加工,会影响到尺寸公差和曲线的一致性,此时必须进行反向间隙的测定和补偿。如在G01切削运动时,反向间隙会影响插补运动的精度,若偏差过大就会造成“圆不够圆,方不够方”的情形;经过大量实验和调试工作,终实现了对电容上电压幅度变化量的提取,论证了调幅电容法在发动机叶尖间隙检测中可行。 而在G00定位运动中,反向偏差影响机床的定位精度,使得钻孔、镗孔等孔加工时各孔间的位置精度降低。这就需要数控系统提供反向间隙补偿功能,以便在加工过程中自动补偿一些有规律的误差,提高加工零件的精度。

旋转叶片叶尖与机匣间的间隙是影响航空发动机、汽轮机、烟气轮机、鼓风机等重大装备安全工作性能、能量转换效率的重要参数。叶尖间隙的动态、在线测量是大型旋转机械实现健康监测、故障诊断、主动间隙控制的关键技术和制约瓶颈之一。本文通过对苛刻工业现场环境下叶尖间隙测量的特殊应用技术需求进行分析,提出了一种基于大频差双频激光的叶尖间隙测量新方法。双路拍波信号的相位差只与包含叶尖间隙信息的光程差有关,而与叶片特性、电磁环境干扰等无关,从而提高测量精度,并可实现自标定(标定的基准单位是自身的拍波波长)。
从某种程度上讲,试验数据就是发动机试验的输出,是试验验证和设计改进的依据。例如,航空发动机转子叶片径向间隙控制是改善发动机气动性能、提高发动机效率的非常重要的环节。据统计:叶尖间隙每增加叶片长度的1%,效率约降低1.5%;本文的研究内容主要有以下几个方面:(1)建立了基于光线跟踪理论的三维数学模型,用于分析光纤传感器的受光特性以指导传感器设计。而效率每降低1%,耗油率约增加2%。叶尖间隙测量范围约为0.3~3.0mm,所以毫米级的偏差极可能导致性能分析谬以千里。同时,准确可信的试验数据也是构建数据模型,推进航空发动机虚拟的坚实保障。
(作者: 来源:)