泰格模具淬火——铸铁模具激光表面氮化
常发生在模具成品淬火、回火后磨削冷加工过程中,多数形成的微细裂纹与磨削方向垂直,深约0.05-1.0mm。
(1)原材料预处理不当,未能充分消除原材料块状、网状、带状碳化物和发生严重脱碳;铸铁模具激光表面氮化
(2)终淬火加热温度过高,发生过热,晶粒粗大,生成较多残余奥氏体;
钢铁工件在淬火后具有以下特点
铸铁模具激光表面氮化
泰格模具淬火——铸铁模具激光表面氮化
常发生在模具成品淬火、回火后磨削冷加工过程中,多数形成的微细裂纹与磨削方向垂直,深约0.05-1.0mm。
(1)原材料预处理不当,未能充分消除原材料块状、网状、带状碳化物和发生严重脱碳;铸铁模具激光表面氮化
(2)终淬火加热温度过高,发生过热,晶粒粗大,生成较多残余奥氏体;
钢铁工件在淬火后具有以下特点:
① 得到了马氏体、贝氏体、残余奥氏体等不平衡(即不稳定)组织。
② 存在较大内应力。
③ 力学性能不能满足要求。因此,钢铁工件淬火后一般都要经过回火铸铁模具激光表面氮化
化学渗层过厚、浓度过大、渗层过度、硬化层过浅、过渡区硬度低等都可导致材料疲劳强度急剧降低;
当模面加工粗糙、精度低、光洁度差,以及刀纹,刻字、划痕、碰伤、腐蚀麻面等也易引起应力集中导致疲劳断裂。铸铁模具激光表面氮化
淬火与回火的主要目的是:
1)减少内应力和降低脆性,淬火件存在着很大的应力和脆性,如没有及时回火往往会产生变形甚至开裂。
2)调整工件的机械性能,工件淬火后,硬度高,脆性大,为了满足各种工件不同的性能要求,可以通过回火来调整,硬度,强度,塑性和韧性。
3)稳定工件尺寸。通过回火可使金相组织趋于稳定,以保证在以后的使用过程中不再发生变形。铸铁模具激光表面氮化
常用的退火工艺有:
① 完全退火。用以细化中、低碳钢经铸造、锻压和焊接后出现的力学性能不佳的粗大过热组织。将工件加热到铁素体全部转变为奥氏体的温度以上30~50℃,保温一段时间,然后随炉缓慢冷却,在冷却过程中奥氏体再次发生转变,即可使钢的组织变细。
② 球化退火。用以降低工具钢和轴承钢锻压后的偏高硬度。将工件加热到钢开始形成奥氏体的温度以上20~40℃,保温后缓慢冷却,在冷却过程中珠光体中的片层状渗碳体变为球状,从而降低了硬度。铸铁模具激光表面氮化
冷轧工作辊热处理通常采用淬火&低温回火,淬火方式如感应表面淬火、整体加热淬火。目的是提高轧辊的性、抗剥落性能。热轧辊通常工作环境在700-800℃高温环境,表面需要承受轧材的强力摩擦及反复加热,还有承受冷却水冷却温度大幅变化热疲劳。热轧辊发展到后来其材料选用了高铬铸铁到半高速钢和高速钢。
高铬铸铁轧辊热处理有两种形式:
①临界转变温度的亚临界热处理;
②高于临界3点的高温热处理。
通常选用第二种,具体工艺有正火、回火。当下高碳高速钢替代高铬铸铁制造轧辊已经成为轧辊的主要发展趋势。
轧辊感应淬火机床具有承载能力强(工件重量可达几十吨,工件长达六米),可连续淬火、分段连续淬火等功能,主要适用于重型轧辊及长粗种轴类零件表面淬火。该机床具有手动-自动操作功能,适用于单件及批量零件生产。操作简单,功能,结构合理,安装调试方便。
(作者: 来源:)