考虑PEDOT:PSS材料本身的特性和硅表面结构光学管理后,硅与背金属电极界面的接触情况成为了制约电池效率提升的主要因素,硅/金属的直接接触会导致界面处形成肖特基势垒,对电子传输的阻碍作用极大,同时界面处严重的复合造成了载流子的损失。基于此,选用氧化锌作为电子选择性材料,将其用于界面处形成金属-介质-半导体结构,并对氧化锌进行Li掺杂调节其功函数进一步减小或消除界面势垒。另外,
导电聚合物厂家
考虑PEDOT:PSS材料本身的特性和硅表面结构光学管理后,硅与背金属电极界面的接触情况成为了制约电池效率提升的主要因素,硅/金属的直接接触会导致界面处形成肖特基势垒,对电子传输的阻碍作用极大,同时界面处严重的复合造成了载流子的损失。基于此,选用氧化锌作为电子选择性材料,将其用于界面处形成金属-介质-半导体结构,并对氧化锌进行Li掺杂调节其功函数进一步减小或消除界面势垒。另外,对硅表面通过本征非晶硅层钝化,这样既能钝化硅又能改善电接触。然而,传统的采用原位聚合或机械混合法制得的有机/无机复合热电材料,存在着无机纳米颗粒难分散、易氧化、粒径大小难以控制以及无机相添加量过大(通常>。并结合硅金字塔陷光结构,终实现超过15%的电池转换效率。
光电材料,
高分子导电化合物,用作电极材料,抗静电剂,光电转化材料等。
高导电透明涂层:PEDOT/PSS的透明性很好,涂层对可见光有良好的透过率,可形成透明无色至蓝色的涂层,透明薄膜的导电性可高达约1000S/cm。
印刷线路板:用于直接金属化工艺中,可进行凸版印刷,喷墨印刷,网版印刷等。
厚膜电致发光:可经丝网印刷,制得透明电极,例如可用于厚膜电致发光。
有机薄膜晶体管:可用于发展的有机半导体领域中,作为源电极、栅电极和漏电极。随着科技的发展应用领域和深度还在迅速扩展。
聚3,4-乙烯二氧噻吩(PEDOT)由拜尔(Bayer AG)科学家于1988年在中提出,人们发现其具有稳定的掺杂态结构,因而具有优异的环境稳定的导电性。同时,人们发展了PEDOT:PSS (聚磺酸)溶胶体系来实现PEDOT材料的水系储存以及加工,结合PEDOT的其他多种化学合成以及原位合成方法,这使得其被广泛应用在储能、柔性电子学、光电转换器件等应用中。高导电透明涂层:PEDOT/PSS的透明性很好,涂层对可见光有良好的透过率,可形成透明无色至蓝色的涂层,透明薄膜的导电性可高达约1000S/cm。
(作者: 来源:)