4、振动
在进给(尤其是低速)时,机床某轴出现振动现象通常是由于测速信号不稳定,如测速装置故障、测速反馈信号干扰等;速度控制信号不稳定或受到干扰;接线端子接触不良,如螺钉松动等。当振动发生在由正方向运动与反向运动的换向瞬间时,一般是由于进给传动链的反向间隙或伺服系统增益过大所致。机床以高速运行时,可能产生振动,这时就会出现过流报警。机床振动问题一般属于速度问题,所以就应去
比例阀电话咨询
4、振动
在进给(尤其是低速)时,机床某轴出现振动现象通常是由于测速信号不稳定,如测速装置故障、测速反馈信号干扰等;速度控制信号不稳定或受到干扰;接线端子接触不良,如螺钉松动等。当振动发生在由正方向运动与反向运动的换向瞬间时,一般是由于进给传动链的反向间隙或伺服系统增益过大所致。机床以高速运行时,可能产生振动,这时就会出现过流报警。机床振动问题一般属于速度问题,所以就应去查找速度环;而机床速度的整个调节过程是由速度调节器来完成的,即凡是与速度有关的问题,应该去查找速度调节器,因此振动问题应查找速度调节器。主要从给定信号、反馈信号及速度调节器本身这三方面去查找故障。

6、位置误差
当伺服轴动动超过位置允差范围时,数控系统就会产生位置误差过大的报警,包括跟随误差、轮廓误差和定位误差等。主要原因有:系统设定的允许范围小;伺服系统增益设置不当;位置检测装置有污染或调整不当;进给传动链累积误差过大:主轴箱垂直运动时平衡装置(如平衡液压缸等)不稳。
在机电一体化产品中,常常要求对执行机构的运动速度和位置加以控制,这往往归结为对驱动机构运动的AC伺服电动缸进行速度和位置控制。下面,就结合电动缸的控制技术来说明实际应用中经常遇到的苦干个基本概念。

伺服电动缸在工业自动化领域的运动控制中扮演了一个十分重要的角色。随着应用场合的不同,对伺服电动缸的控制性能要求也不尽相同。因而,在实际应用中,伺服电动缸有各种不同的控制形式。从被控制量来说,这些控制形式主要有:转矩控制/电流控制;速度控制;位置控制。
1.转矩控制/电流控制
有些负载,例如螺栓拧紧机构,只需要伺服电动缸提供必要的紧固力,并根据需要紧固力的大小来决定伺服电动缸的转矩控闭和转矩限制,而对伺服电动缸的速度和位置是没有要求的。在这种应用场合,就应该采用转矩控制形式。又由于在伺服系统中,电动缸的永磁转子强极位置通过位置传感器测量出来,并以此信号作为电流控制的依据,从而实现磁场和电流两者的正交控制。在这种情况下,伺服电动缸所产生的电磁转矩与电枢电流成正比,故转矩控制实际上也就是电流控制。

电动滑台是直线滑台的一种,工业上又常称为电动缸,线性模组等,结构由直线滑台与马达驱动的结合组成。通过马达驱动实现带动工件自动线性运动作业。同时可以通过多方向轴的组合,组成设备上的运动执行机构,这种机构常被称为:工业机械手、XYZ轴机械手、坐标轴滑台等。
电动滑台的应用与电动缸一样,在各大行业中使用广泛,例如:
1、娱乐行业:机械人手臂及关节,动感座椅等
2、行业:模拟,模拟等
3、汽车行业:压装机,测试仪器等
4、工业行业:食品机械,陶瓷机械,焊接机械,喷涂设备,升降平台等
5、。

(作者: 来源:)