为什么叫傅立叶变换红外光谱仪(FT-IR)
到目前为止红外光谱仪已发展了三代。代是早使用的棱镜式色散型红外光谱仪, 用棱镜作为分光元件,分辨率较低,对温度、湿度敏感, 对环境要求苛刻。上世纪六十年代出现了第二代光栅型色散式红外光谱仪, 采用的光栅刻制和技术, 提高了仪器的分辨率, 拓宽了测量波段, 降低了环境要求。然后在上世纪七十年代又发展起来第三代的干涉型红外
傅立叶变换热红外光谱仪报价
为什么叫傅立叶变换红外光谱仪(FT-IR)
到目前为止红外光谱仪已发展了三代。代是早使用的棱镜式色散型红外光谱仪, 用棱镜作为分光元件,分辨率较低,对温度、湿度敏感, 对环境要求苛刻。上世纪六十年代出现了第二代光栅型色散式红外光谱仪, 采用的光栅刻制和技术, 提高了仪器的分辨率, 拓宽了测量波段, 降低了环境要求。然后在上世纪七十年代又发展起来第三代的干涉型红外光谱仪,傅立叶变换红外光谱仪既是干涉型的代表,它具有宽的测量范围、高测量精度、极高的分辨率以及极快的测量速度
傅立叶是谁?
让·巴普蒂斯·约瑟夫·傅立叶(Baron Jean Baptiste Joseph Fourier,1768-1830),男爵,法国数学家、物理学家,1768年3月21日生于欧塞尔,1830年5月16日卒于巴黎。1817年当选为科学院院士,1822年任该院终身秘书,后又任法兰西学院终身秘书和理工科大学校务。
主要贡献是在研究《热的传播》和《热的分析理论》时创立了一套数学理论,即傅立叶级数,对19世纪的数学和物理学的发展都产生了深远影响。而傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。
近红外光谱
近红外光谱主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,记录的主要是含氢基团X-H(X=C、N、O)振动的倍频和合频吸收。不同团(如、亚,苯环等)或同一基团在不同化学环境中的近红外吸收波长与强度都有明显差别,NIR 光谱具有丰富的结构和组成信息,非常适合用于碳氢有机物质的组成与性质测量。但在 NIR区域,吸收强度弱,灵敏度相对较低,吸收带较宽且重叠严重。因此,依靠传统的建立工作曲线方法进行定量分析是十分困难的,化学计量学的发展为这一问题的解决奠定了数学基础。其工作原理是,如果样品的组成相同,则其光谱也相同,反之亦然。如果我们建立了光谱与待测参数之间的对应关系(称为分析模型),那么,只要测得样品的光谱,通过光谱和上述对应关系,就能很快得到所需要的质量参数数据。分析方法包括校正和预测两个过程:
在校正过程中,收集一定量有代表性的样品(一般需要80个样品以上),在测量其光谱图的同时,根据需要使用有关标准分析方法进行测量,得到样品的各种质量参数,称之为参考数据。通过化学计量学对光谱进行处理,并将其与参考数据关联,这样在光谱图和其参考数据之间建立起一一对应映射关系,通常称之为模型。虽然建立模型所使用的样本数目很有限,但通过化学计量学处理得到的模型应具有较强的普适性。对于建立模型所使用的校正方法视样品光谱与待分析的性质关系不同而异,常用的有多元线性回归,主成分回归,偏小二乘,人工神经网络和拓扑方法等。显然,模型所适用的范围越宽越好,但是模型的范围大小与建立模型所使用的校正方法有关,与待测的性质数据有关,还与测量所要求达到的分析精度范围有关。实际应用中,建立模型都是通过化学计量学软件实现的,并且有严格的规范(如ASTM6500标准)。
(作者: 来源:)