pcr扩增的原理
实验方法原理
①模板DNA的变性:模板DNA经加热至94℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应做准备;
②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;
③引物的延伸:DNA模
样品稀释液
pcr扩增的原理
实验方法原理
①模板DNA的变性:模板DNA经加热至94℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应做准备;
②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;
③引物的延伸:DNA模板--引物结合物在Taq酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留copy原理,合成一条新的与模板DNA 链互补的半保留复1制链。
重复循环变性--退火--延伸三过程,就可获得更多的“半保留复1制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟, 2~3小时就能将待扩目的基因扩增放大几百万倍。
典型的PCR包括高温变性、低温退火、中温延伸三个步骤,通过将这一套过程不断循环,使DNA得以成百万倍的扩增。
LA PCR的原理
LA PCR的关键是具有3′→5′Exonuclease活性 (Proof reading活性) 的耐热性DNA聚合酶。在PCR过程中当有错误的碱基摄入时,反应性能将大幅度下降,TaKaRa Ex Taq 和TaKaRa LA Taq 依靠3′→5′Exonuclease活性可将错配的碱基除去,从而延伸反应能顺利地进行下去,使长链DNA的扩增成为可能。
出现的PCR扩增条带与目的靶序列条带一致,有时其条带更整齐,亮度更高。
引物设计不合适:选择的扩增序列与非目的扩增序列有同源性,因而在进行PCR扩增时,扩增出的PCR产物为非目的性的序列。靶序列太短或引物太短,容易出现假阳性。需重新设计引物。
靶序列或扩增产物的交叉污染:这种污染有两种原因:一是整个基因组或大片段的交叉污染,导致假阳性。这种假阳性可用以下方法解决:操作时应小心轻柔,防止将靶序列吸入加样内或溅出离心管外。除酶及不能耐高温的物质外,所有试剂或器材均应高压消毒。所用离心管及样进头等均应一次性使用。必要时,在加标本前,反应管和试剂用紫外线照射,以破坏存在的核酸。二是空气中的小片段核酸污染,这些小片段比靶序列短,但有一定的同源性。可互相拼接,与引物互补后,可扩增出PCR产物,而导致假阳性的产生,可用巢式PCR方法来减轻或消除。
低严格单链特异性引物PCR (Lowstringencysingle specific primer PCR, LSSP- PGR)技术
LSSP - PCR是建立在PCR基础上的又一种新型基因突变检测技术。要求是“二高一低”。高浓度
的单链引物( 5-端/ 3-端引物均可).约4. 8Lmol高浓度的Taq酶( 16Lmol/ 100ml) 低退火温度( 300.所用的模板必须是纯化的DNA部分片段。在这种低严格条件下。引物与模板间发生不同程度的错配。形成多种大小不同的扩增产物。经电泳分离后形成不同的带型。对同一目的基因而言。所形成的带型是固定的。因而称之为“基因标签”。这是一种检测基因突变或进行遗传鉴定的敏感方法。
(作者: 来源:)