数据治理数据分类
大家都知道我们擅长做数据分类分级,对于我们来说,这确实是一个老生常谈的问题,但在整个数据安全领域中,它却又是般的存在,不得不提。散落在企业各个存储角落的那些数据,在业务维度上,都属于哪个业务域、哪条业务线、哪个业务系统、哪个业务项、哪个业务分类,这些被贴上了业务标签的数据,将更容易从业务视角进行解读,为数据分级打下根基。从数据资产化的角度来看,数据分类
省数据安全治理方案
数据治理数据分类
大家都知道我们擅长做数据分类分级,对于我们来说,这确实是一个老生常谈的问题,但在整个数据安全领域中,它却又是般的存在,不得不提。散落在企业各个存储角落的那些数据,在业务维度上,都属于哪个业务域、哪条业务线、哪个业务系统、哪个业务项、哪个业务分类,这些被贴上了业务标签的数据,将更容易从业务视角进行解读,为数据分级打下根基。从数据资产化的角度来看,数据分类可以独立存在,然而数据分级在某种程度上来说,需要依赖于数据分类的结果,因为数据分类令数据有了明确的业务属性。
数据治理多种异构数据源支持
具有多种异构数据源支持,一个脱敏规则可应用于不同的数据源,可对结构化数据、半结构化数据以及非结构化数据进行脱敏处理。例如:可在excel、TXT、Oracle、Hadoop等数据源上直接引用。脱敏后的数据完全不落地分发,提供库到库、文件到库、库到文件、文件到文件等方式,无需在生产系统或本地安装任何客户端。
数据治理数据脱敏
派客动力脱敏系统采用的静态脱敏方式,可以从元数据、数据的角度在海量业务系统的数据中发现敏感数据,并定位敏感数据的存储与分布,统计敏感数据量级。并且支持用户自定义发现规则、通过设置敏感字段对企业系统中的表和列进行扫描定位,利用专门的脱敏算法对敏感数据进行变形、屏蔽、替换、随机化等处理,将敏感数据转化为虚构数据,隐藏了真正的隐私信息,为数据的安全使用提供了基础保障。同时脱敏后的数据可以保留原有的数据特征与分布,无需改变相应的业务逻辑,实现了企业低成本、、安全的使用生产的隐私数据。
(作者: 来源:)