汽车用高强钢板材的HFQ工艺:在475℃的温度下进行30min固溶处理,然后450℃时进行模具淬火,之后进行120℃*12h的人工时效处理,并通过7075铝合金的微观组织分析进行了解释。随后通过热力拉伸实验研究了不同温度下7075的基本力学性能,研究结果说明7075铝合金的在高温时成形性较好。基于此结果对7075铝合金板材进行了成形性仿1真及实验研究,研究结果表明:汽车用高
高强钢报价
汽车用高强钢板材的HFQ工艺:在475℃的温度下进行30min固溶处理,然后450℃时进行模具淬火,之后进行120℃*12h的人工时效处理,并通过7075铝合金的微观组织分析进行了解释。随后通过热力拉伸实验研究了不同温度下7075的基本力学性能,研究结果说明7075铝合金的在高温时成形性较好。基于此结果对7075铝合金板材进行了成形性仿1真及实验研究,研究结果表明:汽车用高强钢板在常温下的成形性很差,冲压时会发生破1裂;HFQ工艺有利于提高7075铝合金的成形性,并且随着初始成形温度的增大,成形性越好。然后基于帽型件准静态压溃实验和仿1真,对不同HFQ工艺下7075铝合金帽型件的压溃吸能特性进行了研究,研究结果表明:在固溶处理温度为475℃、固溶处理时间为30min、成形温度为450℃并且进行人工时效处理的HFQ工艺条件下,7075-T6铝合金板材具有的压溃吸能特性。基于实验和仿1真,研究了不同材料帽型件的压溃吸能特性,结果表明:汽车用高强钢板具有高的比吸能,对于实现汽车强量化具有更大的应用前景。
q500e高强板结构性能组织性能影响结构喷丝板并选取2种拒海水型功能油剂,进行海洋缆绳用高高强低伸涤纶工业丝的纺制。探究可有效减少油剂添加量和提高产品性的纺丝工艺,并使用自行研发设计的一套荷重湿测试仪评估海洋缆绳用高强低伸涤纶工业丝的性能。结果表明:采用特殊结构喷丝板纺得的海洋缆绳用高强低伸涤纶工业丝涂覆拒海水型功能油剂后,其性明显提高(次数对数值高达4.21),q500e高强板且上油均匀性好,油剂添加量明显减少。
在考虑q460a高强板钢铸坯的高温组织情况后采用合适的蠕变理论,确定该钢种的蠕变模型,利用实验数据对试样的应变时间曲线进行线性拟合来确定方程的参数,得到了q460a高强板高温蠕变情况的本构方程。利用本构方程对应变-时间曲线进行预测,发现实验测量值与计算得到的应变-时间曲线是基本吻合的,因此可以初步认定该本构模型对于描述高温下Q460E钢的蠕变行为的描述是有效的。对试样的微观组织进行观测。q460a高强板通过金相观测实验研究了组织的形貌以及温度及载荷对其的影响,通过透射电镜(TEM)研究了试样组织内部的位错及滑移的比例,分析了蠕变过程组织的变化。进行连铸过程中铸坯的温度场模拟。结果表明,与二元气保护相比,在三元气保护下熔滴过渡细小均匀,射流过渡的临界电流降低;由指状熔深转变为盆状熔深,焊缝表面更加平滑,焊接飞溅率降低,焊缝氧氮含量更低。1 050~1 100℃,道次压下率控制在10%以上;第二阶段在奥氏体未再结晶区轧制,开轧温度为≤950℃,终轧温度为860~790℃,待温后累计压下率≥50%,道次变形率≥12%;采用层流冷却方式,钢材具有良好的强韧性能。
在消费过程中,同批次板料在消费过程中局部制件状态存在差别,经过比照发现,板料尺寸存在差别,该件板料为梯形板料,前期消费为人工剪板,因人员操作及剪板设备误差,招致剪板板料尺寸存在差别,进一步对照尺寸存在差别的板料消费的制件,发现尺寸较大板料1.4mm×(310+260)mm×690mm消费的制件较尺寸较小的板料1.4mm×(305+250)mm×690mm消费的制件拉毛更为严重,如图4、图5所示。在板料外表质量相同的前提下,板料尺寸越大,制件成形过程中周围的压料面积越大,压边力越大,高强钢板,制件成形时活动阻力越大,越容易招致制件拉毛,所以在消费过程中板料尺寸要保证在一定范围内,板料尺寸越大,制件呈现拉毛及开裂的风险越大。后期该件变卦为摆剪开料,比照同批次板料消费的制件状态,较前期人工剪料稳定性高,制件状态根本分歧。
(作者: 来源:)