一般来说,脱硝设备系统的控制是在本机组的集散控制系统上实现的。控制系统利用设定的NH3/NOx摩尔比提供所需的氨流量,使入口NOx浓度与烟气流量的乘积产生NOx流量信号,然后该信号乘以所需的NH3/NOx摩尔比即为氨流量信号。
摩尔比的值是在现成的试验脱硝设备,操作过程中确定的,也将记录在氨流量控制系统的程序中。通常,计算出的氨流量需求信号被发送到控制器,然后与实
低温脱硝装置
一般来说,脱硝设备系统的控制是在本机组的集散控制系统上实现的。控制系统利用设定的NH3/NOx摩尔比提供所需的氨流量,使入口NOx浓度与烟气流量的乘积产生NOx流量信号,然后该信号乘以所需的NH3/NOx摩尔比即为氨流量信号。
摩尔比的值是在现成的试验脱硝设备,操作过程中确定的,也将记录在氨流量控制系统的程序中。通常,计算出的氨流量需求信号被发送到控制器,然后与实际的氨流量信号进行比较,然后通过比例加积分处理产生的误差信号来定位氨流量控制阀。如果氨气因联锁故障而跳闸,控制阀将关闭。
根据脱硝设备,设计的66.7%的脱硝效率,我们可以根据工程变更中心入口处的氮氧化物浓度和设计要求的3.8毫克/立方米的氨泄漏量计算出修正摩尔比,并将其发送到氨流量控制系统程序中。脱硝设备控制系统根据计算出的氨流量需求信号定位氨控制阀,实现脱硝的自动控制。通常可以在不同负荷下调节氨流量,找到合适的氨注入量。
湿法烟气脱硫脱硝技术
湿法烟气脱硫脱硝技术
1、石灰石/石灰-石膏法:
原理:是利用石灰石或石灰浆液吸收烟气中的SO2,生成亚硫酸钙,经分离的亚硫酸钙(CaSO3)可以抛弃,也可以氧化为硫酸钙(CaSO4),以石膏形式回收。是目前技术成熟、运行状况稳定的脱硫工艺,脱硫效率达到90%以上。
目前传统的石灰石/石灰—石膏法烟气脱硫工艺在现在的市场应用是比较广泛的,其采用钙基脱硫剂吸收后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象。对比石灰石法脱硫技术,双碱法烟气脱硫技术则克服了石灰石—石灰法容易结垢的缺点。
2、间接石灰石-石膏法:
常见的间接石灰石-石膏法有:钠碱双碱法、碱性硫酸铝法和稀硫酸吸收法等。原理:钠碱、碱性氧化铝(Al2O3·nH2O)或稀硫酸(H2SO4)吸收SO2,生成的吸收液与石灰石反应而得以再生,并生成石膏。该法操作简单,二次污染少,无结垢和堵塞问题,脱硫,但是生成的石膏产量较差。
冬天运行脱硝设备时的注意事项
冬天运行脱硝设备时的注意事项
一、在冬季的时候,不管是电厂或者是锅炉厂家,其在工作量上都非常大,而脱硝设备也将不断的工作,那么在如此长时间的运行下,其必定会出现各种不同的故障并导致其停运,而我们在对其进行停机维修的时候。 一定要保证脱硝设备整个浆液的管道是处于供热的状态,并对供液以及废水等管道进行有效的冲刷,如果是位置比较低的管道,可以将其进行拆卸排液,在完成相应的检修工作之后,检查其有没有出现结冰的情况,并对管道进行再次的冲刷。 二、如果脱硝设备的再热器出现故障的话,那么应及时的对供气的设备进行停止,并以较快的速度将设备中的积水排出,预防其出现冻结的现象。 三、设备在运行的过程中,出现突然停电的现象,应及时将供电恢复,保证传动件、伴热的系统和管道等可以良好的工作,如果较长时间不能恢复供电的话,那么就要将设备中的积水排出干净,防止其出现冻结。
SCR混合烟气脱硝技术是结合SCR和SNCR技术的优势发展起来的,降低了SCR系统的脱硝设备成本,但工艺流程系统相对复杂。该技术更适用于高灰分、高脱硝效率的行业。
为防止生产区燃煤后产生的过量氮氧化物污染环境,造成生产效率低下,需对煤进行脱氮处理。脱硝设备的工艺可分为燃烧前脱硝、燃烧中脱硝和燃烧后脱硝。
可控硅是目前比较成熟的烟气脱硝技术,是脱硝设备原理在炉后脱硝中的体现。日本于20世纪60-70年代末正式投入商业运营,并在催化剂和作用,进行还原剂选择性氧化,因此被称为“选择性”。目前SCR工艺主要分为氨法和尿素法。他们的脱硝设备原理是将氮氧化物还原成对大气影响不大的N2和水。不同的催化剂在作用,催化剂有不同的适宜反应温度,如果反应温度低,催化剂的活性会降低,从而导致反硝化效率降低。如果催化剂继续低温运行,催化剂将受到损害。如果反应温度过高,NH3容易被氧