拉曼光谱仪的工作原理
当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同,这时,称这种散射称为瑞利散射;还有一种散射光,它约占总散射光强度的 10^-6~10^-10,该散射光不仅传播方向发生了改变,而且该散射光的频率也发生了改变,从而不同于激发光(入射光)的频率,因
手持式拉曼光谱公司
拉曼光谱仪的工作原理
当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同,这时,称这种散射称为瑞利散射;还有一种散射光,它约占总散射光强度的 10^-6~10^-10,该散射光不仅传播方向发生了改变,而且该散射光的频率也发生了改变,从而不同于激发光(入射光)的频率,因此称该散射光为拉曼散射。在拉曼散射中,散射光频率相对入射光频率减少的,称之为斯托克斯散射,因此相反的情况,频率增加的散射,称为反斯托克斯散射,斯托克斯散射通常要比反斯托克斯散射强得多,拉曼光谱仪通常大多测定的是斯托克斯散射,也统称为拉曼散射。散射光与入射光之间的频率差v称为拉曼位移,拉曼位移与入射光频率无关,它只与散射分子本身的结构有关。拉曼散射是由于分子极化率的改变而产生的(电子云发生变化)。拉曼位移取决于分子振动能级的变化,不同化学键或基团有特征的分子振动,ΔE反映了特定能级的变化,因此与之对应的拉曼位移也是特征的。这是拉曼光谱可以作为分子结构定性分析的依据。
便携式拉曼光谱仪关键部件
一台完整的拉曼光谱仪通常由激光器(光源)、样品外光路、色散系统、信号接收系统和信息处理系统几大部分组成。相对于好的实验室系统,便携式拉曼设备的内部部件更简单且模块化程度更高,其关键的零部件包括光源模块、光谱仪模块以及拉曼探头三样。国产拉曼采用的光谱仪相较进口产品存在一定差距,主要体现在光谱分辨率、噪声控制等方面。在激光光源模块领域,国内外拉曼大部分选用的激光器在体积和能量方面基本一致,主要在线宽和输出稳定方面存在差异。但仅针对便携式拉曼设备的应用来说,以上几个关键部件国内外厂商的技术水平相差已经不大,国产产品正在靠近国外同类产品的水平。
拉曼光谱仪常见的问题及解答
当你测试的样品是液态、粉末或体积非常大时怎么办?
液体样品可采用毛细管或液体池或直接将液体滴在载玻片上进行测试,粉末样品可取少许放置在载玻片上进行测试,固体大样品可由仪器公司提供的大样品台进行测试。
当你的样品需要在不同高压下测试怎么办?
可向仪器公司购置或在国内相关单位订制一套拉曼高压样品测试池来对你的样品进行高压测试。
当你想进行偏振拉曼测量时该怎么办?
应配置一套偏振片和半波片进行测试,偏振拉曼可帮助你对分子振动的对称性进行检测。
为什么将测试样品放置不同取向时得到的拉曼谱图不相同?
这是因为入射激光照射在样品表面不同晶面取向上引起的。采用四分之一波片对激光进行扰偏可帮助去除方向效应。一般可向仪器公司或其它提供光学元件的公司购买四分之一波片。
拉曼光谱仪
1. 曾经一度怀疑线性CCD坏掉了,劝老板再买一个,可老板坚持说不可能的,(没可能坏的啦)。事实证明他是对的。
2. 将拉曼光谱从显微镜光路拆下,倒置固定在光学平台上。
3. 仔细观察光路,拆下大部分零件,拆前拍照记下原始位置。Fig. 4
4. 用白胶水粘紧光栅与反射镜。
5. 拆下两块滤光片,用一块反射镜反射回去,微调半透半反镜并用小孔检查光路,让入射光与出射光重合,使反射光透过pinhole,并且在CCD 镜头前看到光栅散射出的长条光斑。
6. 仔细调节Laser diode 后方的三个调整螺丝,同时微调Pinhole的位置(上方两个机米螺丝,下方一个弹性机米螺丝,前方两个紧固螺丝),使透过Pinhole的光强达到大且光路共轴垂直。耐心缓慢旋转每一个旋钮体会光斑的强度与移动趋势。(难的一步)
7. 将外壳从光学平台卸下并封装好,复原。倒置接回显微镜光路,并仔细调两个反射镜的四个旋钮,使光斑在屏幕正。
8. 安装后,调节显微镜的上方卤灯的明暗,观察到有信号强弱的变化,若没有,拆掉,重复上述步骤 2-7。
9. 观察到明暗,使用标准样品,用长积分时间(20s),观察到拉曼信号。Fig.7(a)
10. 使用软件上的校准功能(Specify calibration peaks),用polystyrene样品重新校准。
11. 拆下