可通过测量霍尔元件的电压变化得到待测微压差ΔP。图1霍尔式磁性液体微压差传感器结构示意图Fig.传感器改进部分的模型如图2所示。将霍尔元件固定在环形支架上,通过滑动支架可以改变霍尔元件测量位置,增加了传感器测量范围。环形支架的凹槽处放置霍尔元件,两个环形支架可以在滑轨上滑动,通过调节两个环形支架间距,可以改变传感器的测量量程。
以上特征峰表明CD-CHOL与PAA-Azo在气液
数控滚圆机
可通过测量霍尔元件的电压变化得到待测微压差ΔP。图1霍尔式磁性液体微压差传感器结构示意图Fig.传感器改进部分的模型如图2所示。将霍尔元件固定在环形支架上,通过滑动支架可以改变霍尔元件测量位置,增加了传感器测量范围。环形支架的凹槽处放置霍尔元件,两个环形支架可以在滑轨上滑动,通过调节两个环形支架间距,可以改变传感器的测量量程。
以上特征峰表明CD-CHOL与PAA-Azo在气液界面上通过主客体作用形成复合组装膜。图4CD-CHOL多层LB膜的红外光谱Fig.进而,对CD-CHOL多层LB膜进行XPS表征,如图5所示。图5CD-CHOL多层LB膜的XPS数据以及C1s分峰5(a)是CD-CHOL分别在纯水亚相、PAA-Azo亚相的多层膜的XPS数据,特征峰C1s、O1s、N1s的相对强度均有所不同。
综合来说,100~150目的样品熔制效果好于未筛分的及筛分的其他粒度。图1不同粒度硅砂配合料制备的高应变点玻璃显微图像从图3中可以明显的看出未筛分硅砂熔制的玻璃样品的均匀性差,采用筛分过的3个粒度硅砂熔制的玻璃样品均匀性均好于未筛分的;而100~150目的样品熔制的玻璃样品均匀性又优于60~100目、150~230目的样品。此现象产生的原因为:玻璃配合料中硅砂的粒度越小,容易在配合料高应变点玻璃熔制、澄清效果的影响143硅砂粒度为150~230目时,由于超细粉的粒径非常小,表面积就越大,与其它反应物的接触的面积就越大

(作者: 来源:)