原位杂交技术应用于染色体、细胞和组织切片等样品中进行核酸特异性检测,与免6疫组化技术的结合应用,能将DNA、mRNA和蛋白水平上的基因活性与样品的显微拓扑信息结合起来。1969年Pardue和Gall将放9射性标记的探针直接应用于纯化核酸的杂交,此后得益于分子克6隆技术的发展,及不同探针标记系统和检测系统的应用,大大增加了原位杂交检测的应用灵活性和检测灵敏度。
在条件都得到满足的
GISH
原位杂交技术应用于染色体、细胞和组织切片等样品中进行核酸特异性检测,与免6疫组化技术的结合应用,能将DNA、mRNA和蛋白水平上的基因活性与样品的显微拓扑信息结合起来。1969年Pardue和Gall将放9射性标记的探针直接应用于纯化核酸的杂交,此后得益于分子克6隆技术的发展,及不同探针标记系统和检测系统的应用,大大增加了原位杂交检测的应用灵活性和检测灵敏度。

在条件都得到满足的情况下,杂交的成败就取决于保温时间。时间短了,杂交反应不完成;时间长了也无益,会引起非特异结合增多。一般杂交反应要进行20h左右。1966年Britten和Kohne推荐用Cot =值来计算杂交反应时间。Cot 值实际上是杂交液中单链起始浓度(Co)和 反应时间(t)的乘积。实验表明Cot =100时,杂交反应基本完成。Cot=0,基本上没有杂交。例如在液相杂交中未标记的DNA 400μg/ml(按单股DNA每微克 紫外吸收值为0.024计算,总的吸收值为 9.6),如果反应时间为21h,那么对于未标记的DNA来说,Cot =9.6/21 =100.8,,杂交完成了。对标记DN A(浓度为0.1μg/ml)来说Cot值为0.05,这就充分排除了标记DNA的自我复性。Tm值25℃时杂交zui佳,所以首先要根据公式(4)计算杂交体Tm 值。由此式可见,通过调节盐浓度、甲酰胺浓度和杂交温度来控制所需的严格性。
总的来说,随探针浓度增加,杂交率也增加。另外,在较窄的范围内,随探针浓度增加,敏感性增加。依我们的经验,要获得较满意的敏感性,膜杂交中32P标记探针与非放0射性标记探针的用量分别为5~10 ng/ml和25~1000ng/ml,而原位杂交中,无论应用何种标记探针,其用量均为0.5~5.0μg/ml。探针的任何内在物理特性均不影响其使用浓度,但受不同类型标记物的固相支持物的非特异结合特性的影响。

(作者: 来源:)