人工智能控制器
总而言之,当采用自适应模糊神经控制器,规则库和隶属函数在模糊化和反模糊化过程中能够自动地实时确定。有很多方法来实现这个过程,但主要的目标是使用系统技术实现稳定的解,并且找到的拓朴结构配置,自学习迅速,收敛。模糊逻辑控制应用 主要有两类模糊控制器,Mamdani和Sugeno型。到目前为止只有Mamdani模糊控制器用于调速控制系统中。
人工智能公司
人工智能控制器
总而言之,当采用自适应模糊神经控制器,规则库和隶属函数在模糊化和反模糊化过程中能够自动地实时确定。有很多方法来实现这个过程,但主要的目标是使用系统技术实现稳定的解,并且找到的拓朴结构配置,自学习迅速,收敛。模糊逻辑控制应用 主要有两类模糊控制器,Mamdani和Sugeno型。到目前为止只有Mamdani模糊控制器用于调速控制系统中。
误差反向传播技术是多层前聩ANN常用的学习技术。如果网络有足够多的隐藏层和隐藏结点以及适宜的激励函数,多层ANN只能实现需要的映射,没有直接的技术选择优隐藏层、结点数和激励函数,通常用尝试法解决这个问题,反向传播训练算法是基本的快下降法,输出结点的误差反馈回网络,用于权重调整,搜索优。
模糊逻辑的应用 在大多数讨论模糊逻辑在交流传动中运用的文章中,都介绍的是用模糊控制器取代常规的速度调节器,可英国Aberdeen大学开发的全数字传动系统中有多个模糊控制器,这些模糊控制器不仅用来取代常规的PI或PID控制器,同时也用于其他任务。该大学还把模糊神经控制器用于各种全数字高动态性能传动系统开发中。
(作者: 来源:)