铸造合金钢
铸钢是指用于制造铸钢件的钢材。当铸件的强度较高,使用铸铁达不到要求时,应选用铸造合金钢。但铸钢的钢水流动性不如铸铁,所以浇注结构的厚度不宜过小,形状不宜过于复杂。当硅含量控制在上,可以提高钢水的流动性。铸钢按其品种和用途可分为通用工程铸钢、焊接结构铸钢、不锈钢铸钢和耐热钢铸钢。
铸钢按化学成分可分为铸合金钢和铸碳钢,按特性还可分为铸工具钢、铸特种钢、工程结构铸件
潍坊低碳钢铸件厂
铸造合金钢
铸钢是指用于制造铸钢件的钢材。当铸件的强度较高,使用铸铁达不到要求时,应选用铸造合金钢。但铸钢的钢水流动性不如铸铁,所以浇注结构的厚度不宜过小,形状不宜过于复杂。当硅含量控制在上,可以提高钢水的流动性。铸钢按其品种和用途可分为通用工程铸钢、焊接结构铸钢、不锈钢铸钢和耐热钢铸钢。
铸钢按化学成分可分为铸合金钢和铸碳钢,按特性还可分为铸工具钢、铸特种钢、工程结构铸件和铸合金钢。铸造合金钢可分为铸造低合金钢(合金元素总量≤5%)、铸造合金钢(合金元素总量为5%~10%)和铸造高合金钢(合金元素总量≤5%)元素大于或等于 10%)。
铸钢件正火热处理的目的
正火是将钢加热到Ac3(亚共析钢)和Acm(过共析钢)以上30℃-50℃,经过一段时间的保温后,在空气中或者强制流通的空气中冷却到室温的热处理方法。正火比退火冷却速度快,因而正火组织比退火组织细,强度和硬度也比退火组织高。由于正火的生产周期短、设备利用率高,因此正火广泛应用于各类铸钢件中。
正火的目的分为以下三类:
(1)正火作为终热处理
对于强度要求不高的金属铸件,正火可以作为终热处理。正火可以细化晶粒,是组织均匀化,减少亚共析钢中铁素体含量,使珠光体含量增多并细化,从而提高钢的强度、硬度和韧性。
(2)正火作为预先热处理
断面较大的铸钢件,在淬火或调质处理(淬火加高温回火)前进行正火,可以消除魏氏组织和带状组织,并获得细小而均匀的组织。对于含碳量大于0.77%的碳钢和合金工具钢中存在的网状渗碳体,正火可以减少二次渗碳体含量,并使其不形成连续网状,为球化退火做组织准备。
(3)改善切削加工性能
正火可以改善低碳钢的切削加工性能。低碳钢铸件在退火后硬度过低,在切削加工的时候容易粘刀,从而造成表面粗糙度过大。通过正火热处理,低碳钢铸件的硬度可以提高到140HBW-190HBW,接近于佳切削硬度,从而改善切削加工性能。
铸钢件的固溶和沉淀硬化处理
固溶处理
固溶处理的主要目的是使碳化物或者其他析出相溶解于固溶体中,获得过饱和的单相组织。奥氏体不锈钢钢、奥氏体锰钢以及沉淀硬化不锈钢的铸件一般都应该经过固溶处理。固溶温度的选择取决于铸钢的化学成分和相图。奥氏体锰钢铸件的温度一般为1000℃-1100℃;奥氏体铬镍不锈钢铸件的温度一般为1000℃-1250℃。
铸钢中含碳量越高,难溶合金元素越多,则其固溶温度应该越高。含铜的沉淀硬化铸钢件,由于铸态有硬质富铜相在冷却过程中沉淀,致使铸钢件硬度升高。为了软化组织、改善加工性能,铸钢件需经固溶处理。其固溶温度为900℃-950℃。
沉淀硬化处理
沉淀硬化处理是在回火温度范围内进行的弥散强化处理,也称为人工时效。沉淀硬化处理的实质是,在较高的温度下,自过饱和固溶体中析出碳化物、氮化物、金属间化合物以及其他不稳定的中间相,并弥散分布于基体中,因而使铸钢的综合力学性能和硬度提高。
时效处理的温度直接影响铸钢件的终性能。如果时效温度过低,沉淀硬化相析出缓慢;如果时效温度过高,则因为析出相的聚集长大引起过时效,而得不到佳的性能。所以,铸造厂应该根据铸钢件的铸钢牌号和规定的性能选用合适的时效温度。奥氏体耐热铸钢的时效温度一般为550℃-850℃;高强度沉淀硬化铸钢的时效温度一般为500℃。
铸钢件的渗碳
铸钢件的化学热处理是指将铸件置于一定温度的活性介质中保温,使一种或者几种化学元素渗入表层。化学热处理可以改变铸件表层的化学成分、金相组织和机械性能。常用的化学热处理工艺包括渗碳、渗氮、碳氮共渗、渗硼以及渗金属等。在对铸件进行化学热处理的时候,应该综合考虑铸件的形状、尺寸、表面状态,以及表面热处理的情况。
渗碳是指将铸件在渗碳介质中加热、保温,然后使碳原子渗入到表层。渗碳的主要目的是为了提高铸件表面的含碳量,同时在铸件中形成一定的碳含量梯度。渗碳钢的含碳量一般为0.1% - 0.25%,以保证铸件芯部有足够的韧性和强度。
渗碳层的表面硬度一般为56HRC - 63HRC. 渗碳层的金相组织为细针马氏体 + 少量的残留奥氏体以及均匀分布的粒状碳化物。不允许网状碳化物的存在,并且,残留奥氏体体积分数一般不超过15% - 20%。
渗碳以后的铸件的芯部硬度一般为30HRC - 45HRC. 芯部金相组织应为低碳马氏体或下贝氏体。不允许有块状或者沿晶界析出的铁素体。
在实际生产中,常见的渗碳方法有三种:固体渗碳、液体渗碳和气体渗碳。
(作者: 来源:)