高温烘箱风机是叶片式流动机械,其产生的噪声包括空气动力性噪声、气固耦合噪声、机械噪声、电磁噪声,其中空气动力性噪声是大风量轴流风机的主要噪声。空气动力性噪声是叶片旋转引起空气振动产生的。高温烘箱风机旋转噪声和涡流噪声是两种不同的气动噪声。旋转噪声是当大风量轴流风机叶片旋转推动空气流动时,均匀分布的叶片与周围空气相互作用,引起气体压力脉冲而产生离散噪声;除
高温烘箱风机
高温烘箱风机是叶片式流动机械,其产生的噪声包括空气动力性噪声、气固耦合噪声、机械噪声、电磁噪声,其中空气动力性噪声是大风量轴流风机的主要噪声。空气动力性噪声是叶片旋转引起空气振动产生的。高温烘箱风机旋转噪声和涡流噪声是两种不同的气动噪声。旋转噪声是当大风量轴流风机叶片旋转推动空气流动时,均匀分布的叶片与周围空气相互作用,引起气体压力脉冲而产生离散噪声;除叶片顶部的声功率级较高外,叶片非工作面中部的声功率级较高,是由于作用在边界层上的粘性力产生的速度梯度,导致回流,被主流带走形成较大的能量辐射,w在第二个叶轮处更明显。旋涡噪声是叶片表面上的气流形成紊流附面层后,随着压力的增加,从叶片上旋涡脱离,引起脉动产生的宽频噪声。
高温烘箱风机噪声单频的噪声较大值存在于低频阶段,且噪声在2500Hz 以后噪声频谱没有明显波动。有研究表明,100Hz 以下的噪声,大气吸收作用微弱,在10km 的传播范围内,噪声几乎不衰减;边界条件为速度入口和自由出口,实体壁不滑动,采用多旋转坐标系MRF实现了动、静界面之间的数据传输。400Hz 的噪声在大气相对湿度为50%,温度为293K 情况下,5km 的传播范围衰减3dB。由此可见,低频噪声随传播距离的变化不大。
本公司采用多功能数字环境噪声分析仪对某项目上大风量轴流风机声压级进行测量,结果可知,高温烘箱风机的等效连续A 声级约为87dB(A),并且噪声在63Hz 单频时峰值达98dB(A),在125Hz 单频时噪声峰值达96dB(A)。该结果证实了轴流风机单频噪声较大值在低频段,主要噪声为低频噪声。根据气流方向,通风过程中存在冷却滞后现象,主要集中在杂质堆积区、两风管中间区,特别是距风管、高温烘箱风机较远的粮堆中心区,在铺设储粮地笼时,选择合适的开口。
(1)高温烘箱风机叶顶间隙超差对失速点压力偏差和风机效率偏差有显著影响。
(2)叶顶间隙与失速点压力偏差的相关系数为-0.99,即叶顶间隙越大,失速点负压偏差越大,实际失速线向下偏离理论失速线的程度越严重。
(3)叶尖间隙与效率偏差的相关系数为-0.93。
叶尖间隙与效率也有很强的相关性,也就是说,叶尖间隙越大,负效率偏差越大。以叶片角度可调、叶片角度固定的对旋轴流风机叶轮为研究对象,建立了两种叶轮的三维模型,并引入ANSYS进行计算模型分析。得到了两个高温烘箱风机叶轮的种振型。叶片变形量较大,尤其是叶片顶部,通过角度调节机构,叶片变形量略有增加。利用LMS模态试验软件得到了两个叶轮的个固有频率。通过比较发现,叶片角度调节机构使叶轮的固有频率略有增加,高温烘箱风机叶轮的固有频率避开了电机的频率,在正常运行时不产生共振。叶轮是旋转轴流风机的重要部件。其安全性和可靠性直接影响到风机的正常运行。一方面,叶轮的模态分析可以得到结构的固有频率,使叶轮的工作频率远离其固有频率,有效地避免了共振引起的疲劳损伤;顶部弯头内设弧形导流结构,采用光滑镀锌板+吸声材料+护面+穿孔镀锌板的结构,在改变气流流通方向的同时对噪声进行消声。另一方面,可以得到叶轮机构在不同频率下的振动模态。变形较大的区域可能出现裂纹、松动、零件损坏等,变形较小。该地区在工作中相对稳定。


将高温烘箱风机叶轮模型引入到ANSYS中。叶轮整体材料为Q235普通碳素结构钢,密度7850 kg/m3,弹性模量210 gpa,泊松比0.3。叶片角度可调的叶轮,轮毂和叶片调节机构采用Q235普通碳素结构钢,叶片采用尼龙66。该材料阻燃、防爆、、耐热。它常被用作机械配件,而非有色金属,作为机械外壳或发动机叶片。该材料的密度为1150 kg/m3,弹性模量为8.3gpa,泊松比为0.28。叶轮各部分采用可调叶片固定连接。在叶片角度可调的叶轮中,当叶片臂与轮毂连接时,高温烘箱风机叶片臂可以旋转和调整,即接触面的法向可以分离,在切向上没有相对滑动。由于叶片的叶尖比整个叶轮机构中的其他零件更容易变形,因此叶片啮合时应减小网格尺寸,轮毂零件在整个结构中的变形较小。考虑计算时间,可以适当增大网格尺寸。在求解自由模态时,刚体有三个平移和三个旋转,因此个频率是系统的刚体模态。整个高温烘箱风机叶轮机构为对称结构。计算了两个叶轮的前20个自由振型,并从中提取了前6个自由振型。高温烘箱风机在同一转速下,由于动叶安装角的变化,因此其工作范围是一组特性曲线。
(作者: 来源:)