在现有的散热装置中,绝大部分采用散热鳍片与导热部件(多为热管)结合并且其两者之间的接合形式为多个散热鳍片以扩管套接的方式干涉配合在导热部件上。这种接合方式中,各散热鳍片间的接触面积较小,使各散热鳍片间导热效率较低,导致集热时热量不能有效分散,影响散热装置的散热效率;其次,由于导热部件与散热鳍片之间的热膨胀系数不同,当导热部件与散热鳍片热胀冷缩后极有可能导致散热鳍片从导热部件上脱
非标定做散热片
在现有的散热装置中,绝大部分采用散热鳍片与导热部件(多为热管)结合并且其两者之间的接合形式为多个散热鳍片以扩管套接的方式干涉配合在导热部件上。这种接合方式中,各散热鳍片间的接触面积较小,使各散热鳍片间导热效率较低,导致集热时热量不能有效分散,影响散热装置的散热效率;其次,由于导热部件与散热鳍片之间的热膨胀系数不同,当导热部件与散热鳍片热胀冷缩后极有可能导致散热鳍片从导热部件上脱落,使散热装置失去散热功能。
散热鳍片表面积灰对其散热性能的影响
积灰层的有效热导率
将积灰层简化成多孔介质模型主要的目的是要获得它的有效热导率,然后将肋片表面的积灰层简化成一定厚度的薄壁,并将求得的有效热导率赋予该薄壁就可以通过数值模拟来探究积灰层对肋片散热特性的影响。
积灰的堆叠形式以及颗粒尺寸等因素都会影响积灰内部形成的孔隙特征,孔隙特征是描述积灰结构重要的参数,所以将积灰简化从多孔介质模型是准确的。
散热鳍片,简称散热片,在电子工程设计的领域中被归类为“被动性散热元件”。以导热性佳、质轻、易加工之金属(多为铝或铜,银则过于昂贵,一般不用)贴附于发热表面,以复合的热交换模式来散热。众所周知,CPU热量的发散主要是通过传导方式来实现的,这就涉及到和处理器直接接触的介质——散热片,散热片吸收了热量以后,用对流的形式将热散发掉,在对流散热的过程中散热面积主要由散热鳍片的表面积的大小决定的,表面积越大,散热效果越好;表面积越小,散热效果就越差。

成形与结合工艺: 散热片的成形与结合工艺间有着密切的联系,而且其中一些技术在两道工序中均可使用,切削工艺的具体种类很多,从无润滑切削到润滑切削,从高速切削到激光切割,从车、钻到铣、磨,在散热片的成形过程中,为了获得一些较特殊、精细的形状,都需要使用切削工艺。具体用途主要有板材(吸热底、鳍片等)成形、散热片开槽、底面修整、特殊雕刻等。切削而来的浮雕效果。优势:根据不同方式、刀具,就一旦使用可适用于各种用途。

(作者: 来源:)