正火热处理
正火主要用于钢铁工件。一般钢铁正火与退火相似,但冷却速度稍大,组织较细。有些临界冷却速度很小的钢,在空气中冷却就可以使奥氏体转变为马氏体,这种处理不属于正火性质,而称为空冷淬火。与此相反,一些用临界冷却速度较大的钢制作的大截面工件,即使在水中淬火也不能得到马氏体,淬火的效果接近正火。钢正火后的硬度比退火高。正火时不必像退火那样使工件随炉冷却,占用炉子时间短,生产,所以
山东碳钢铸件工厂
正火热处理
正火主要用于钢铁工件。一般钢铁正火与退火相似,但冷却速度稍大,组织较细。有些临界冷却速度很小的钢,在空气中冷却就可以使奥氏体转变为马氏体,这种处理不属于正火性质,而称为空冷淬火。与此相反,一些用临界冷却速度较大的钢制作的大截面工件,即使在水中淬火也不能得到马氏体,淬火的效果接近正火。钢正火后的硬度比退火高。正火时不必像退火那样使工件随炉冷却,占用炉子时间短,生产,所以在生产中一般尽可能用正火代替退火。对于含碳量0.25%的低碳钢,正火后达到的硬度适中,比退火更便于切削加工,一般均采用正火为切削加工作准备。对含碳量为0.25~0.5%的中碳钢,正火后也可以满足切削加工的要求。对于用这类钢制作的轻载荷零件,正火还可以作为终热处理。高碳工具钢和轴承钢正火是为了消除组织中的网状碳化物,为球化退火作组织准备。
普通结构零件的终热处理 ,由于正火后工件比退火状态具有更好的综合力学性能,对于一些受力不大、性能要求不高的普通结构零件可将正火作为终热处理,以减少工序、节约能源、提高生产效率。此外,对某些大型的或形状较复杂的零件,当淬火有开裂的危险时,正火往往可以代替淬火、回火处理,作为终热处理。
铸钢件的渗碳
铸钢件的化学热处理是指将铸件置于一定温度的活性介质中保温,使一种或者几种化学元素渗入表层。化学热处理可以改变铸件表层的化学成分、金相组织和机械性能。常用的化学热处理工艺包括渗碳、渗氮、碳氮共渗、渗硼以及渗金属等。在对铸件进行化学热处理的时候,应该综合考虑铸件的形状、尺寸、表面状态,以及表面热处理的情况。
渗碳是指将铸件在渗碳介质中加热、保温,然后使碳原子渗入到表层。渗碳的主要目的是为了提高铸件表面的含碳量,同时在铸件中形成一定的碳含量梯度。渗碳钢的含碳量一般为0.1% - 0.25%,以保证铸件芯部有足够的韧性和强度。
渗碳层的表面硬度一般为56HRC - 63HRC. 渗碳层的金相组织为细针马氏体 + 少量的残留奥氏体以及均匀分布的粒状碳化物。不允许网状碳化物的存在,并且,残留奥氏体体积分数一般不超过15% - 20%。
渗碳以后的铸件的芯部硬度一般为30HRC - 45HRC. 芯部金相组织应为低碳马氏体或下贝氏体。不允许有块状或者沿晶界析出的铁素体。
在实际生产中,常见的渗碳方法有三种:固体渗碳、液体渗碳和气体渗碳。
高锰钢铸件的固溶热处理
高锰钢铸件的固溶热处理 (水韧处理)
在高锰钢的铸态组织中有大量析出的碳化物,这些碳化物会降低铸件的韧性,使其在使用过程中容易断裂。高锰钢铸件的固溶热处理的主要目的是消除铸态组织中晶内和晶界上的碳化物,得到单相奥氏体组织。这样可以提高高锰钢的强度和韧性,从而使高锰钢铸件适用于更广泛的领域。
高锰钢铸件的固溶热处理大致可以分为几个步骤:将铸件加热至1040℃以上,并保温适当的时间,使其中的碳化物完全溶于单相奥氏体中;然后冷却,得到奥氏体固溶体组织。这种固溶处理又称为水韧处理。
铸钢件的热处理
高锰钢铸件的沉淀强化热处理
高锰钢沉淀强化热处理,是指在加入适量碳化物形成元素(如钼、钨、钒、钛、铌和铬)的基础上,通过热处理的方式在高锰钢中得到一定数量和大小的弥散分布的碳化物第二相质点。这种热处理可以强化奥氏体基体、提高高锰钢的性能。
中铬钢铸件的热处理
中铬钢铸件的热处理的目的,是得到高强韧性和高硬度的马氏体基体组织,以便提高铸钢件的强度、韧性和性。中铬钢含有较多的铬元素,并且具有较高的淬透性。因此,它通常的热处理方法是:经过950℃ - 1000℃是其奥氏体化,然后淬火处理,并及时进行回火处理(通常在200 - 300℃)进行。
低合金铸钢件的热处理
低合金铸钢件依据合金成分及含碳量的不同而采取水中淬火、油中淬火以及空气淬火处理。珠光体铸钢则采用正火 + 回火的热处理方式。为了获得高强韧性、高硬度的马氏体基体组织,并提高铸钢件的性,低合金铸钢件通常在850 - 950℃淬火,在200 - 300℃回火。
(作者: 来源:)