无论是生物制药大规模分离纯化还是药l物分析、食品检测、环境监测、石油化工产量控制、生命科学研究等都离不开色谱技术。色谱填料是色谱系统的心脏,因此被誉为色谱“芯”。改革开发以来,色谱领域的基础研究取得突飞猛进的进步,发表文章数量位居世界第l一,但无论是用于工业分离纯化还是实验室分析检测的色谱填料和色谱柱基本依赖进口,色谱产业长期处于缺“芯”状况。而且几乎所有重大色
有机杂化硅胶
无论是生物制药大规模分离纯化还是药
l物分析、食品检测、环境监测、石油化工产量控制、生命科学研究等都离不开色谱技术。色谱填料是色谱系统的心脏,因此被誉为色谱“芯”。改革开发以来,色谱领域的基础研究取得突飞猛进的进步,发表文章数量位居世界第
l一,但无论是用于工业分离纯化还是实验室分析检测的色谱填料和色谱柱基本依赖进口,色谱产业长期处于缺“芯”状况。而且几乎所有重大色谱理论的创建,新的色谱分离分析模式的建立,新型色谱填料技术的发明,及关键产业化技术突破都与14亿人口无关。这对于拥有
l多色谱领域专职研究人员,色谱文章多年位居世界第
l一的来说是比较尴尬的。纳微科技将给大家讲解纳微科技是如何去破
l解这一局面。
高
l效液相色谱(HPLC) 是20 世纪 70 年代发展起来的可以对多组分复杂样品进行高
l效、的分离分析技术。伴随着色谱理论体系不断完善,色谱柱种类日益丰富,新型色谱填料不断开发成功,新的分离模式和分离方法的建立,色谱仪器性能不断改进和更新,液相色谱分析技术已成为药
l物分析、食品检测、环境监测、石油化工、生命科学等不可或缺的工具。色谱柱是液相色谱系统的心脏,色谱填料是色谱柱核心,因此色谱柱和色谱填料被誉为色谱“芯”。开发新型高
l性能色谱填料以满足越来越复杂样品高
l效、分离分析的需求一直是业界的追求目标。随着生命科学、环境科学、制药、及合成化学的迅猛发展, 人们对HPLC 性能不断提出更高、更新的要求。提高色谱填料的柱效、选择性、峰容量和使用稳定性, 增大填料的pH 使用范围、延长填料使用寿命, 具有多种分离模式以及对环境友好已经成为色谱填料的发展方向。
为了满足越来越复杂样品的高
l效、分离和分析的需求,硅胶色谱填料的制备技术在不断进步和。从早形貌不规则的无定形硅胶发展到球型硅胶;从粒径分布宽的多分散球型硅胶发展到粒径高度均一的单分散球型硅胶;从全多孔球型硅胶发展到表面多孔核壳结构硅胶;从金属杂质含量高的A型硅胶发展到超纯的B型硅胶;从不耐碱的纯硅胶基质发展到耐碱的有机杂化硅胶;从相对单一的键合相到更加多样化的键合相硅胶色谱填料。每一次硅胶材料制备技术的进步都促进了硅胶色谱分离分析性能的进一步提升,并拓展其应用范围。
硅胶具有机械强度高、不溶胀和不可压缩性、粒径和孔径可控,且表面富含硅羟基可以键合不同功能基团等优点,使得硅胶成为几乎完
l美的色谱填料。但硅胶在pH<2条件下键合相容易脱落,pH>8时硅胶会溶解的缺陷限制了其使用范围并缩短其使用寿命。因此,如何提高硅胶耐酸碱性能一直是色谱填料工作者努力的方向。美国Waters 公司率
l先以TEOS和有机硅氧烷为混合硅源,在骨架中引入化学稳定性强的有机桥联基团,制得杂化硅胶色谱填料。杂化硅胶色谱填料的出现,大大提高了硅胶色谱填料的耐酸碱性,同时使用寿命明显提高,也降低表面硅羟基效应。
(作者: 来源:)