80%无人驾驶标识板—————广州航鑫光电科技有限公司,是一家专门做激光雷达标定板、反射板的公司。
一种车载雷达标定装置
由于汽车后视镜存在视觉盲区,变道之前看不到盲区的车辆,如果盲区内有超车车辆,此时变道就会发生碰撞事故。
为了解决后视镜的盲区问题,人们通过在汽车后保检杠左右两侧安装盲区雷达,当探测到盲区内有车辆靠近时,指示灯闪烁,此时驾驶
80%无人驾驶标识板
80%无人驾驶标识板—————广州航鑫光电科技有限公司,是一家专门做激光雷达标定板、反射板的公司。
一种车载雷达标定装置
由于汽车后视镜存在视觉盲区,变道之前看不到盲区的车辆,如果盲区内有超车车辆,此时变道就会发生碰撞事故。
为了解决后视镜的盲区问题,人们通过在汽车后保检杠左右两侧安装盲区雷达,当探测到盲区内有车辆靠近时,指示灯闪烁,此时驾驶员虽然看不到盲区内的车辆,但是也能通过指示灯知道后方有车辆驶来,变道有碰撞的危险,从而避免撞车事故的发生。
雷达作为传感器,是工作在以自身为球心原点的球坐标系中,因此雷达安装姿态的偏差将直接导致雷达探测范围及目标信息的偏移,会影响主动安全系统对于路况环境的判断,降低系统安全性能与驾驶体验。
因此,雷达安装到车辆后需要消除安装带来的系统误差,即需要对雷达的安装位置进行标定,目前市面上主流的标定方案为目标模拟机标定方案和角反射器标定方案,目标模拟机方案成本很高,需要购买专门的四轮对中平台和目标模拟机;
角反射器方案成本较低,但是角反射器易造成信号干扰致使标定精度不够,且占地较大。
欢迎咨询广州航鑫光电了解更多80%无人驾驶标识板
一种雷达测试暗室的制作方法
雷达测试技术领域,尤其涉及一种雷达测试暗室。
毫米波是指波长介于1-10mm的电磁波,具有波长短、频段宽的特点,比较容易实现窄波束,分辨率高,不易受干扰。
毫米波雷达是测量被测物体相对距离、现对速度、方位的传感器,毫米波雷达主要包括收发天线、射频前端、调制信号、信号处理模块等。
随着雷达技术的发展与进步,毫米波雷达传感器开始应用于汽车电子、、智能交通等多个领域。
在毫米波雷达对于距离模拟测试时,需要较长的测试距离才能获得较为准确的模拟距离。
现有用于毫米波雷达距离模拟的测试暗室大多是长方形或正方形结构,由于测试要求距离比较长,采用现有的长方形或正方形暗室时,暗室的结构面积较大,吸波材料的使用量较大,导致暗室搭建成本较高;
同时,喇叭天线与目标模拟角反射器在同一方位上,会造成相互干扰。
移动机器人定位的基本概念
我们来考虑机器人和自动驾驶的定位问题,其实它是要估计运动主体(机器人本身或者车辆)这个参考帧,相对于周遭静止环境的位姿或者位姿变化, 这个周遭静止的环境,我们可以统称为世界坐标系。
移动定位问题,可以简化为跟重力方向垂直的水平面上的2D位姿估计。 2D坐标系的(0,0)点, 及x,y轴的朝向其实可以是任意的,只要基准定好了,后面的参考不变即可。
对于自动驾驶,有一些细节需要补充, 我们熟知的定位(GPS)是经纬度坐标,如何对应平面笛卡尔坐标系呢?
经纬度坐标可以通过墨卡托投影系统(Universal Transverse Mercator,UTM)投影到UTM 的一个区块中, 区块中再细的位置可以看成一个2D平面使用笛卡尔坐标进行表征, 这样球面的经纬度坐标和平面坐标是可以转换的。
激光雷达应用场景有那些?
激光雷达不仅可以单独使用,也能够同微波雷达,可见光电视、红外电视或微光电视等成像设备组合使用,使得系统既能搜索到远距离目标,又能实现对目标的精密跟踪。除了大众所熟知的自动驾驶,激光雷达在很多领域也发挥着的作用。
1、城市三维建筑模型
“数字城市”是数字地球技术系统的重要组成部分,而表达城市主要物体的三维模型包括三维地形,三维建筑模型、三维管线模型。这些三维建筑模型是数字城市重要的基础信息之一。
激光雷达技术可以完成三维空间数据采集,经过处理便可得到具有坐标信息的影像数据。
2、大气环境监测
激光雷达由于探测波长短、波束定向性强,能量密度高,因此具有高空间分辨率、高的探测灵敏度、能分辨被探测物种和不存在探测盲区等优点,已经成为目前对大气进行遥感探测的有效手段。利用激光雷达可以探测气溶胶、云粒子的分布、大气成分和风场的垂直廓线,对主要污染源可以进行有效监控
(作者: 来源:)