人工智能控制器
人工智能一直都处于计算机技术的前沿,经历了几起几落,长久以来,人工智能对于普通人来说是那样的可望而不可及,然而它却吸引了无数研究人员为之奉献才智,随着现代控制理论的发展,控制器设计的常规技术正逐渐被广泛使用的人工智能软件技术所替代。不同的人工智能控制通常用完全不同的方法去讨论。但AI控制器例如:神经、模糊、模糊神经,以及遗传算法都可看成一类非线性函数近似
供热智能化设备
人工智能控制器
人工智能一直都处于计算机技术的前沿,经历了几起几落,长久以来,人工智能对于普通人来说是那样的可望而不可及,然而它却吸引了无数研究人员为之奉献才智,随着现代控制理论的发展,控制器设计的常规技术正逐渐被广泛使用的人工智能软件技术所替代。不同的人工智能控制通常用完全不同的方法去讨论。但AI控制器例如:神经、模糊、模糊神经,以及遗传算法都可看成一类非线性函数近似器
通过适当调整(根据响应时间、下降时间、鲁棒性能等)它们能提。例如:模糊逻辑控制器的上升时间比优PID控制器快1.5倍,下降时间.5倍,过冲更小。它们比古典控制器的调节容易。在没有必须知识时,通过响应数据也能设计它们。运用语言和响应信息可能设计它们。们有相当好的一致性(当使用一些新的未知输入数据就能得到好的估计)
也有一些的文章论述运用模糊逻辑控制感应电机的磁通和力矩。它的输入标定因子是变化的。实验结果也验证了所提方案的有效性。该系统中模糊速度控制器与常规的PI速度控制器和CRPWM塑变器一起使用,它往往用来补偿可能的惯性和负载转矩的扰动。神经网络的应用 现如今,有大量文章讨论神经网络在交流电机和驱动系统的条件监测和诊断中的运用。
人工智能技术控制器
误差反向传播技术性是双层前聩ANN常见的学技术。假如互联网有充足多的隐藏层和隐藏结点及其适合的激励函数,双层ANN只有完成必须的投射,沒有立即的技术性挑选佳隐藏层、结点数和激励函数,一般用尝试法处理这个问题,反向传播训炼优化算法是基本上的更快降低法,輸出结点的误差意见反馈回互联网,用以权重值调节,检索佳。
(作者: 来源:)