人工智能控制器
STEAC决策机TM,是采用人工智能深度学习技术,对换热站和锅炉房进行智能化控制的AI软硬件一体化产品,无需更换站内设备,无需增加布线施工,无需进行软件升级,只需一台智能决策机TM,便可完成换热站和锅炉房的智能化升级改造!STEAC决策机TM是硕人时代自主研发的边缘计算设备,内置操作系统,基于人工智能AI深度学习模型
由于控制简单
换热站智能化报价
人工智能控制器
STEAC决策机TM,是采用人工智能深度学习技术,对换热站和锅炉房进行智能化控制的AI软硬件一体化产品,无需更换站内设备,无需增加布线施工,无需进行软件升级,只需一台智能决策机TM,便可完成换热站和锅炉房的智能化升级改造!STEAC决策机TM是硕人时代自主研发的边缘计算设备,内置操作系统,基于人工智能AI深度学习模型
由于控制简单,直流传动在过去得到了广泛的使用。但由于它们众所周知的限制以及DSP技术的进步,直流传动正逐渐被的交流传动所取代。但近,许多厂商也推出了一些改进的直流驱动产品,但都没有使用人工智能技术。相信使用人工智能的直流传动技术能得到进一步的提高。智能技术在电气传动技术中占相当重要的地位,特别是自适应模糊神经元控制器在性能传动产品中将得到广泛应用
由于在纯碱碳化塔中部温度控制系统中,其控制对象本身的滞后较大,用传统PID控制方式来调节温度,达到系统稳定状态的时间过长,而改用智能控制与传统PID控制相结合的方法,能充分发挥智能控制的优点,极大地缩短系统稳定的时间,并增强系统的抗干扰能力.
,特别是自适应模糊神经元控制器在性能传动产品中将得到广泛应用
不同的人工智能控制通常用完全不同的方法去讨论。但AI控制器例如:神经、模糊、模糊神经,以及遗传算法都可看成一类非线性函数近似器。这样的分类就能得到较好的总体理解,也有利于控制策略的统一开发。这些AI函数近似器比常规的函数估计器具有更多的优势,它们的设计不需要控制对象的模型(在许多场合,很难得到实际控制对象的动态方程,实际控制对象的模型在控制器设计时往往有很多不确实性因素,例如:参数变化,非线性时,往往不知道)。
(作者: 来源:)