这种技术是采用真空镀膜机将防水剂在真空条件下采用喷雾的形式从产品外观的隙缝中喷入产品内部,目的是为了让防水剂更广泛的去接触电路部分,但由于各种产品的外观结构不一样,密封性也不一致,所以喷雾之后防水剂在产品内部形成的涂层往往不完整。
这种技术是目前比较有趋势的做法,但是所使用的纳米液的一定要过关,并且能达到国际市场对产品的要求,这种技术操
派瑞林薄膜
这种技术是采用真空镀膜机将防水剂在真空条件下采用喷雾的形式从产品外观的隙缝中喷入产品内部,目的是为了让防水剂更广泛的去接触电路部分,但由于各种产品的外观结构不一样,密封性也不一致,所以喷雾之后防水剂在产品内部形成的涂层往往不完整。
这种技术是目前比较有趋势的做法,但是所使用的纳米液的一定要过关,并且能达到国际市场对产品的要求,这种技术操作简单,无须增加设备方面的投入。只需要将 PCBA 在纳米防水液中浸泡几秒就可以,做完涂层后不影响连接器的导电性,可以防酸碱盐腐蚀,但是也会导致产品外观的变形损伤,不过不会对 PCB 形成明显的影响,这种防水涂层方式目前还无法做到7级以上防水等级。
由于高分子膜是均匀形成的,与液体涂层相比,少量薄薄的一层Parylene就能完全满足物理防护和电气防护的要求。
Parylene真空沉积工艺的一个重要优点就是操作方便。小的部件可以批量进行,无需夹具。具有技术的高产量工艺也已经开发出来,成千上万的小部件产品都能批量进行清洁和准确的涂敷。可重复进行的Parylene涂层工艺能保证每一个部件或成批量部件的所有表面,都能得到准确的涂敷。相反,液体涂层工艺需要单独处理每个小部件。
随着物联网成为现实,各类传感器应用也越来越广泛,如智慧城市、智慧、人工智能、无人驾驶、可穿戴设备等,且用于各种复杂环境和环境中。用于这些恶劣环境中的传感器,无疑会出现生锈、腐蚀、受潮等现象,致使工作。派瑞林涂层能耐酸碱和,对水汽和盐雾等恶劣环境有的阻隔能力,同时,派瑞林涂层很薄(几微米甚至可以做到几百纳米),对传感器的灵敏度影响很小,目前被各类传感器作为材料。
另外,Parylene涂层厚度较薄(通常为25um),对电路板表面绝缘电阻影响不大,且对元器件工作时所产生的热量消散也非常有利。另外由于分子结构对称性较好,使它在较高的频率下仍有较小的介质损耗和介电常数,它的这种高频低损耗特性使它为高频微波电路的可靠防护创造了条件。
(作者: 来源:)