我们输入图片,希望计算机能够将内容识别出来,将结果输出。仍以数字为例,当输入图片并用矩阵表示后,通过将灰度值转化为灰度,可以轻松辨识其所表示的内容。很朴素的想法就是将各个数字所代表的矩阵提前存放在计算机内,当输入一张图片后,计算机通过计算,从而找到适合的数字进行输出。人脸识别在近几年已成为一种热门的身份认证技术,它主要利用人的脸部多个特征信息对人体的身份进行辨别。这样我们就解决了图像的表示问题,建
人脸识别系统道闸机
我们输入图片,希望计算机能够将内容识别出来,将结果输出。仍以数字为例,当输入图片并用矩阵表示后,通过将灰度值转化为灰度,可以轻松辨识其所表示的内容。很朴素的想法就是将各个数字所代表的矩阵提前存放在计算机内,当输入一张图片后,计算机通过计算,从而找到适合的数字进行输出。人脸识别在近几年已成为一种热门的身份认证技术,它主要利用人的脸部多个特征信息对人体的身份进行辨别。
这样我们就解决了图像的表示问题,建立了图像和矩阵的等价关系。图片可以转化为矩阵,通过矩阵也可以恢复原始图片。对图像中的人脸信息进行定位与提取;对不同的人脸信息进行分类处理,并将信息传递给人脸识别系统;对比人脸特征信息相似度,并确认身份。近几年,传统的身份鉴别技术已经不足以满足人们的需求,在这种情况下,人脸识别技术脱颖而出,无论在科研方面还是在实践应用方面,人脸识别系统都取得了重大的突破,并且在各行各业也扮演着越来越重要的角色。
大家都知道,计算机能够识别和处理的是二进制,不管我们输入的是文本、图像、声音,计算机都是用一定长度的二进制串进行存储和处理。在灰度图像中,一个像素使用8个比特位,从而可以表示256个灰度阶,表围是0-255。其中0代表纯黑色,255代表纯白色。人脸识别在近几年已成为一种热门的身份认证技术,它主要利用人的脸部多个特征信息对人体的身份进行辨别。

接下来,就是电脑主动去区分不同的人脸,人类能够通过眼睛大小、鼻子高低、肤色等外部形态轻松地分辨不同的两张人脸,利用电脑分辨人脸,就需要对图像进行量化,得到脸部的 128 个特征测量值,进一步计算出欧式距离值,终即可确定你是不是你。简单起见,就使用两个矩阵对应元素之差的之和或者平方和等,计算机进行运算,找到相似的矩阵,然后将其所代表的数字进行输出。随着现代科技的发展,社会中各种有关身份识别的安全问题越来越多,引起了人们对身份鉴别问题方面更多的重视。

(作者: 来源:)