由上述分析可知,随着六偏磷酸钠掺入量的增加,颗粒之间的静电排斥力增大,流动性提高,因此物料浇注时更加密实,烘干后体积密度增加,显气孔率降低;但六偏磷酸钠过量又会导致颗粒之间静电排斥力减小,流动性降低,物料浇注时更加疏松,烘干后体积密度减小,显气孔率增加。
图2 110℃干燥后试样的体积密度和显气孔率随六偏磷酸钠掺入量的变化曲线对比图2和图3可知:1450℃烧成后试样体积密度
分散剂六偏磷酸钠生产厂家
由上述分析可知,随着六偏磷酸钠掺入量的增加,颗粒之间的静电排斥力增大,流动性提高,因此物料浇注时更加密实,烘干后体积密度增加,显气孔率降低;但六偏磷酸钠过量又会导致颗粒之间静电排斥力减小,流动性降低,物料浇注时更加疏松,烘干后体积密度减小,显气孔率增加。
图2 110℃干燥后试样的体积密度和显气孔率随六偏磷酸钠掺入量的变化曲线对比图2和图3可知:1450℃烧成后试样体积密度和显气孔率的变化趋势与110℃干燥后的几乎类似,但是达到体积密度和小显气孔率时的六偏磷酸钠掺入量增至0.15%;并且1450℃烧成后试样的体积密度更小,显气孔率更大。图3 1450℃烧成后试样的体积密度和显气孔率随六偏磷酸钠掺入量的变化曲线由图4可以看出,在1450℃烧成后,
六偏磷酸钠掺入量为0.10%试样的断面存在大量气孔,并且气孔分布均匀,结构相对疏松,骨料与基质结合较好。图4 六偏磷酸钠掺入量为0.10%时试样在1450℃烧成后的SEM形貌在1450℃下烧成时,试样中大量结晶水逸出,在原来水分子位置留下空隙,气孔率增加;而且,在1450℃下会产生液相基质,这些液相基质填充于微小气孔之间,使得骨料与基质之间的结合变好,因此体积密度增大。结合较好的骨料和基质有助于改善材料的抗侵蚀能力和强度。2.3 六偏磷酸钠掺入量对力学性能的影响由图5可知:试样的耐压强度和抗折强度均随六偏磷酸钠掺入量的增加呈现先增大后减小的变化规律,与其体积密度的变化规律相似。
试样的线膨胀系数不宜过大,过大时试样受到热冲击产生的热应力也较大,这会缩短其使用寿命。由图7(b)可知:不同六偏磷酸钠掺入量下试样的导热系数随温度升高均先迅速降低,这应与试样中显气孔率增加以及水分的排出有关;当温度升至350℃及以上时试样的导热系数略有下降但下降幅度很小。
原因在于试样中的结晶水逸出导致孔隙增加,平均导热系数降低。当温度1150℃时,随着六偏磷酸钠掺入量的增加,试样的导热系数先增后降,与体积密度的变化规律类似,这应与试样内显气孔率的变化有关;温度高于1150℃以后,随着六偏磷酸钠掺入量增加,导热系数的变化没有规律,这可能与液相基质的形成以及水化产物的重度烧结有关。图7 1450℃烧成后不同六偏磷酸钠掺入量下试样的线膨胀系数和导热系数随测试温度的变化曲线结 论(1)在110℃干燥和1450℃烧成后,铁沟浇注料的体积密度随着六偏磷酸钠掺入量的增加先增加后减小,
显气孔率则先减小后增加。其中:110℃干燥后,六偏磷酸钠掺入量为0.10%试样的体积密度,显气孔率小;1450℃烧成后,六偏磷酸钠掺入量为0.15%时的体积密度,显气孔率小。(2)在110℃干燥和1450℃烧成后,铁沟浇注料的耐压强度和抗折强度随着六偏磷酸钠掺入量的增加先增加后减小,与其体积密度的变化规律类似。(3)1450℃烧成后,六偏磷酸钠掺入量为0.10%,0.15%试样的线膨胀系数随测试温度的升高先迅速降低后缓慢增加,较低掺入量下试样的线膨胀系数较大;当测试温度1150℃时,随着六偏磷酸钠掺入量的增加,试样的导热系数先增后降。(4)综合考虑致密性、力学性能和热力学性能要求,六偏磷酸钠的掺入量为0.10%--0.15%,在该掺入量下,铁沟浇注料的致密性好,强度高,导热性能优良。
水是生产生活中的资源,在印染生产中如果使用的水质硬度过高,分散染料加入染浴中会产生二次凝聚。要防止这种状况,印染中常用到六偏磷酸钠来调节印染中对于水的软硬度,
保证印染用水质量使印染加工能顺利进行。 对染色来说可理解为:保证用水质量,避免硬水中的钙、镁离子与染料发生反应而影响染色产品的质量。针对水中的:钙、镁离子 六偏磷酸钠能与水中的钙镁盐生成稳定的可溶性洛合物,从而达到软水的目的 (NaPO3)6Na2[Na4(PO3)6]反应如下:
(PO3)6] → Na2[Ca2(PO4) (PO3)6] → Na[Mg2(PO4)6] + 4Na+ 六偏磷酸钠PH值近中型。优点在于它与硬水生成的钙盐、镁盐具有可溶性,不会沉积在纤维上,而且还可以从工艺生成的不溶性钙染料、镁染料沉淀中夺取钙离子、镁离子而使沉淀重新溶解,从而提高染色产量。 所以,六偏磷酸钠是较理想的软水剂,可对水进行软化,能有效去除水中多余的溶解性硬金属,并对重金属离子有强力螯合力,并对不溶性皂洗有较好分解能力,能有效防止不溶物沉积于纤维上,正常用量1.0-3.0 g/L。
(作者: 来源:)