输气管道末段终点配气站的进站压力比前面各站间管段终点的低,同时,要求管道末段又具有一定的储气能力。因此,在输气管道沿线布置压缩机时,工艺计算必须从末端开始,先决定其长度和管径,然后再进行其他各中间管段的计算。
确定每个压气站在其设计流量下的压比,根据经验,压气站的设计压比不宜太高,否则会导致管道全线得压缩机功率增大,同时管道的输气能耗及输气成本增大。根据设计规范规定当采用
热力管道
输气管道末段终点配气站的进站压力比前面各站间管段终点的低,同时,要求管道末段又具有一定的储气能力。因此,在输气管道沿线布置压缩机时,工艺计算必须从末端开始,先决定其长度和管径,然后再进行其他各中间管段的计算。
确定每个压气站在其设计流量下的压比,根据经验,压气站的设计压比不宜太高,否则会导致管道全线得压缩机功率增大,同时管道的输气能耗及输气成本增大。根据设计规范规定当采用离心式压缩机增压输送时,站压比宜为1.2~1.5。因此,在输气管道沿线布置压缩机时,工艺计算必须从末端开始,先决定其长度和管径,然后再进行其他各中间管段的计算。此外,在没有特殊要求得情况下,管线全线所有压气站的设计压比通常取同一个值。
计算输气管道末段长度和直径时,应考虑以下三个条件:当设计一条新的干线输气管道时,工艺计算应该从末段开始,先确定末段的长度和管径,然后再进行其他各中间管段的计算。管道清洗对能否在使用点获得合格的高纯水水质极为重要,水质要求越高,对清洗要求就越严格。输气管道末段的计算与其他各段的区别是:应该考虑末段既能输气,又能储气的特点,也就是说,在末段的计算中除了要考虑与整条输气管道一致的输气能力,还必须考虑储气能力,尤为理想的是使末段能代替为消除昼夜用气不均衡所需的全部容积的储气罐。
目前纯水循环管道系统的布置常用的有3种:(1)单管布置方式。这种布置方式在阀门关闭时,支管部分易产生滞留,,它将影响其后面管道的水质。同时,当供水区域较大,用水点较多时,由于循环管道过长会造成末端压差较大。因此,它于在较小的、水质要求不太高的纯水输送系统中采用为好。当然也要根据纯水水质的级别进行选材,并注意材料的价格等,要统筹兼顾。(2)两管布置方式。这种布置方式克服了单管布置方式的缺点。因此对一些大型纯水系统,且水质要求较高的场合可采用这种布置方式。(3)多层厂房纯水循环管道系统。
主管道吸入区存在一定的间隙和负压。间隙越大流态化程度就越高,进入管道的物料量就越大。系统传输的数据越大,调整不及时,流态化气体体积小,物料就不能流态化。进入管道的物料较少。确定每个压气站在其设计流量下的压比,根据经验,压气站的设计压比不宜太高,否则会导致管道全线得压缩机功率增大,同时管道的输气能耗及输气成本增大。另一个原因是主管道间隙小,仅采用气力输送系统,操作不当对调节装置的开度过于保守,伸缩管的回缩长度不够,这会使燃气管道的喷嘴与气嘴之间的间隙过小,从而进入管道的物料数量少,输送量小。正确的方法是关闭排放开关,将气体通过内部风道,打开闸门气流,使气体完全均化物料。然后顺时针逐渐摇动调节装置手柄,使伸缩管向后移动,风嘴与喷嘴之间的距离可以打开,物料可以自动流入出料管,从而实现气体输送到物料中,出料开关可以逐渐打开。
(作者: 来源:)