随着伺服系统的大规模应用,伺服驱动器的使用、伺服驱动器的调试和伺服驱动器的维护是伺服驱动器的重要技术问题,越来越多的工业控制服务提供商对伺服驱动器进行了深入的技术研究。
伺服驱动是现代运动控制的重要组成部分,广泛应用于工业机器人、数控加工中心等自动化设备中。特别是用于控制交流永磁同步电动机(PMSM)的伺服驱动器已成为国内外研究的热点。在交流伺服驱动器的电流设计中,通常采用基于矢量控制的
伺服驱动器价格
随着伺服系统的大规模应用,伺服驱动器的使用、伺服驱动器的调试和伺服驱动器的维护是伺服驱动器的重要技术问题,越来越多的工业控制服务提供商对伺服驱动器进行了深入的技术研究。
伺服驱动是现代运动控制的重要组成部分,广泛应用于工业机器人、数控加工中心等自动化设备中。特别是用于控制交流永磁同步电动机(PMSM)的伺服驱动器已成为国内外研究的热点。在交流伺服驱动器的电流设计中,通常采用基于矢量控制的电流、伺服和位置3闭环控制算法。该算法的速度闭环设计是否合理,对整个伺服控制系统的性能,尤其是速度控制性能起着至关重要的作用。
对电机的要求
1、从低速到高速电机都能平稳运转,转矩波动要小,尤其在低速如0.1r/min或更低速时,仍有平稳的速度而无爬行现象。
2、电机应具有大的较长时间的过载能力,以满足低速大转矩的要求。一般直流伺服电机要求在数分钟内过载4~6倍而不损坏。
3、为了满足响应的要求,电机应有较小的转动惯量和大的堵转转矩,并具有尽可能小的时间常数和启动电压。
4、电机应能承受频繁启、制动和反转。
这种测试系统由两部分组成,分别是被测伺服驱动器—电动机系统和上位机。上位机将速度指令信号发送给伺服驱动器,伺服驱动器按照指令开始运行。在运行过程中,上位机和数据采集电路采集伺服系统的运行数据,并对数据进行保存、分析与显示。由于这种测试系统中电机不带负载,所以与前面两种测试系统相比,该系统体积相对减小,而且系统的测量和控制电路也比较简单,但是这也使得该系统不能模拟伺服驱动器的实际运行情况。通常情况下,此类测试系统仅用于被测系统在空载情况下的转速和角位移的测试,而不能对伺服驱动器进行而准确的测试。
(作者: 来源:)