通过对离心式风机型号不同方案的改进,得出如下结论:向内延长斜槽风机叶轮的短叶片,可以有效地减小风机所需的扭矩,提高风机在设计条件下的效率;延长斜槽风机叶轮的长叶片和短叶片,可以提高风机的效率。外扩可以明显提高风机的总压,但随着总压的增大,风机所需的扭矩也随之增大。因此,风扇的效率几乎不变。减小斜槽离心风机样机蜗壳与叶轮的间隙,不仅可以提高风机的总压,而且
离心式风机型号

通过对离心式风机型号不同方案的改进,得出如下结论:向内延长斜槽风机叶轮的短叶片,可以有效地减小风机所需的扭矩,提高风机在设计条件下的效率;延长斜槽风机叶轮的长叶片和短叶片,可以提高风机的效率。外扩可以明显提高风机的总压,但随着总压的增大,风机所需的扭矩也随之增大。因此,风扇的效率几乎不变。减小斜槽离心风机样机蜗壳与叶轮的间隙,不仅可以提高风机的总压,而且可以降低风机所需的扭矩,提率2.1%。(3)根据计算出离心式风机型号的噪声频谱,可以看出设计风机的声压在1100Hz时有一个峰值,声压值为58dB。通过对离心式风机型号样机内部流动的分析,提出了三种不同的改进方案,每种方案都提高了风机的一定性能参数。
风机短叶片向内加长,提高风机效率;风机旋转直径增大,风机总压增大;蜗壳舌与风机叶轮间隙适当减小,风机总压和效率提高。证实了。但离心式风机型号仍采用复杂的曲面叶片结构,这不会改善风机加工工艺的复杂故障,每一个改进方案都不能改善风机叶片通道内的流动特性,使风机的总压力值达到5000pa以上,且冲击力较大。提高风扇的效率。如果只重新设计风机的叶轮结构,必然会导致叶轮与风机蜗壳结构不匹配,导致风机性能急剧下降。因此,本文采用现代风机设计理论,以全压5000pa、转速2900rmp、离心式风机型号的风量1300hm/3为设计目标,对风机进行了重新设计,以满足合作公司的性能要求,提高风机的整体性能。离心式风机型号其他部分的网格生成是通过先划分区域,然后手动划分网格来完成的。在设计中,主要介绍了风机叶轮、蜗壳和集热器结构参数的选择方法,介绍了叶片结构的选择。


离心风机的瞬态计算方法采用第二章所述的稳态计算方法。计算结果收敛后,将收敛结果作为瞬态计算的初始值。湍流模型仍然是sstk_uuu。采用隐式分离法求解离散方程。离心式风机型号的压力修正采用简单算法进行。对流项采用二阶迎风格式离散,扩散项采用二阶中心格式离散,时间项采用二阶隐式格式离散。时间步长由公式确定。通过对原型风机和斜槽风机叶片通道流线图的比较,可以看出所设计的风机内部流动得到了很大的改善,从而验证了本文风机设计方案的可行性。离心风机空气动力噪声的计算离心风机运行时产生的噪声主要包括机械噪声、电磁噪声和空气动力噪声。离心风机的内部是复杂的三维非定常涡噪声。复杂流场结构与气动噪声的相关性是气动噪声研究中的一个难题。

为了了解三维流场结构对气动噪声的影响,在气动噪声预测中,采用条带理论方法确定叶片表面的气动参数。近年来,风机流场结构的研究取得了很大进展。在风机气动噪声预测中,建立了相应的物理模型和数学模型,介绍了复杂流场的数值模拟技术,进行了考虑三维流场的气动噪声预测计算,研究了流场结构对离心式风机型号气动噪声的影响。讨论了如何有效地控制风机内部流量,降低风机噪声。离心式风机型号采用多耦合仿生设计和数值计算方法,研究了仿生叶片的降噪机理。结果表明,仿生叶片的锯齿后缘结构可以有效地改变叶片后缘脱落涡的结构和频率,从而减小叶片表面的压力波动和气流对叶片前缘的影响,使A计权声压级提高。因此本文采用数值计算得方法,找到离心式风机型号内部流动损失的根源,改善风机内部的流动特性,提高风机的综合性能。风机的EL可降低2.1db。Seung-heo等人[64]将叶片的线性后缘改为S形后缘,结果表明,S型后缘叶片能有效地降低空调风机的噪声,使离心式风机型号噪声降低到2.2dB左右。当S型后缘角为5度,叶片倾角适当增大时,可有效降低空调风机噪声。

当改进后的方法不能满足合作机组的性能要求时,采用现代离心式风机型号设计理论完成了风机的设计,并详细介绍了风机各部件结构参数的选择原则。根据叶轮流道断面面积逐渐变化的原理,建立了风机叶片型线成形的数学模型。根据该数学模型,采用双圆弧拼接的方法完成了叶片型线的绘制。设计的离心式风机型号效率为68%,比样机提高19.9%,总压由4626pa提高到5257pa,均满足合作机组的性能要求。通过对原型风机和斜槽风机叶片通道流线图的比较,可以看出所设计的风机内部流动得到了很大的改善,从而验证了本文风机设计方案的可行性。后介绍了离心风机的瞬态计算方法,分析了瞬态计算中时间步长的选择原则。采用瞬态数值方法对新设计的风机内部流动进行了数值模拟。随着计算机技术和计算流体力学(CFD)的发展,数值方法在涡轮内部流动模拟中得到了广泛的应用。在瞬态计算结果稳定后,离心式风机型号利用FW-H模型对设计风机的气动噪声进行了计算。设计风机的声压峰值为1100Hz,声压值为58dB。在远场噪声计算中,随着受流点到叶轮中心距离的增加,风机噪声值呈下降趋势。
(作者: 来源:)