磁力聚合釜各项参数控制
压力控制,聚合温度恒定时,在聚合单体为气相时主要通过催化剂的加热量和聚合单体的加热量俩控制聚合压力,也就是聚合温度。聚合釜气相中,不凝性惰性气体的含量过高是造成聚合釜压力超高的原因之一。此时需炬,以降低聚合釜的压力。
料位控制,聚合釜料位应该严格控制。一般聚合釜液位控制在70%左右,通过聚合浆液的出料速率来控制。连续聚合时聚合磁力反应釜必须有自动料位
实验用磁力反应釜厂商
磁力聚合釜各项参数控制
压力控制,聚合温度恒定时,在聚合单体为气相时主要通过催化剂的加热量和聚合单体的加热量俩控制聚合压力,也就是聚合温度。聚合釜气相中,不凝性惰性气体的含量过高是造成聚合釜压力超高的原因之一。此时需炬,以降低聚合釜的压力。
料位控制,聚合釜料位应该严格控制。一般聚合釜液位控制在70%左右,通过聚合浆液的出料速率来控制。连续聚合时聚合磁力反应釜必须有自动料位控制系统,以确保料位准确控制。料位控制过低,聚合产率低;料位控制过高,甚至满釜,就回造成聚合浆液进入换热器、风机等设备中,造成事故。加氢釜组装完成后,用手转动电机皮带轮,带动搅拌器旋转,若有运转不良、阻滞、卡死或异常声响等状况,应立即检查,排出故障。
聚合浆液浓度控制,浆液过浓、造成搅拌器电动机电流过高,引起超负载跳闸、停转,就会造成磁力反应釜内聚合物结块,甚至引发飞温、爆聚事故。停搅拌是造成爆聚事故的主要原因之一。控制浆液浓度主要通过控制溶剂的加入量和聚合产率来实现。
磁力反应釜焊接热裂纹产生的原因
反应釜工艺方面焊接时影响产生热裂纹的工艺因素很多,如接头形式、工艺规范、预热温度、结构刚度和工件的夹固条件等都对反应釜焊缝的抗热裂能力有一定影响。
1.反应釜焊接工艺和规范。采用大电流、焊、单层焊、直线运条前进等,容易引起反应釜焊接应力的工艺措施会促使产生热裂纹。故在条件允许时,应尽量采用小电流、多层焊,以减少热裂纹的倾向。
焊接结构刚度较大的工件时,常采用预热的方法。预热一方面可以减少冷却速度,减缓在冷却过程中产生的拉伸应力,另一方面也可改善结晶条件,减少化学和物理上的不均匀性。预热温度要根据钢种的化学成分和结构刚度的大小而定。d、反应釜设备升温或降温时,操作动作一定要平稳,以避免温差应力和压力应力突然叠加,使设备产生变形或受损。钢种含碳量越高,其他合金元素越多,工作刚度越大,则要求预热温度越高。
2.反应釜焊接次序。同样的反应釜焊接性能材料和焊接规范,如果反应釜焊接次序不同,产生热裂纹倾向也不同。原因是焊接次序不同产生的焊接应力不同。应采用合理的反应釜焊接次序来减小焊接应力。
磁力反应釜搅拌器类型
磁力反应釜搅拌器类型:
六直叶圆盘涡轮搅拌器,折叶设计加强轴向循环能力、降低剪切。典型径流剪切桨,适合中低粘度流体的混合、萃取、乳化、固体悬浮、溶解、气泡分散、吸收等。是传统的搅拌器之一,兼顾循环与剪切,适合中低粘度流体的混合、传热、循环等,反应等。磁力反应釜釜盖与导柱是由升降臂连结,摇动升降手轮,经升降丝杠运动,使釜盖在导柱上、下、左、右运动,升降臂的活动靠滚珠的减摩作用自由运动无阻。适合低粘度流体的混合、循环、固体悬浮、溶解等。
轴流型磁力搅拌器,相同的功率可以得到大的排量。
带稳定环推进式搅拌器,同推进式磁力搅拌器,带稳定环使搅拌器在高速运行下的稳定性得以提高。
典型轴流桨,适合低粘度流体的混合、传热、循环、固体悬浮、溶解等。
磁力真空反应釜操作注意事项
PID控制加热和搅拌时要注意以下事宜:
(1)加热时应循序加热升温,严禁过快加热,防止温度过冲。
(2)严禁电机在高速运转时直接关机,也不准调速电位器在高速位置时直接开机,否则,容易损坏器件。
(3)加热电位器在不采用PID方式控制加热时,可随时调整加热电压,以降低温度上过冲的幅度。
(4)控制箱需要接地防止过电。
(作者: 来源:)