2.1 电容器的含义:衡量导体储存电荷能力的物理量.
2.2 电容器的英文缩写:C (capacitor)
2.3 电容器在电路中的表示符号: C 或CN(排容)
2.4 电容器常见的单位: 毫法(mF)、微法(uF)、纳法(nF)、皮法(pF)
2.5 电容器的单位换算: 1法拉=103毫法=106微法=109纳法=1012皮 法; 1pf=1
高压直流滤波电容器公司
2.1 电容器的含义:衡量导体储存电荷能力的物理量.
2.2 电容器的英文缩写:C (capacitor)
2.3 电容器在电路中的表示符号: C 或CN(排容)
2.4 电容器常见的单位: 毫法(mF)、微法(uF)、纳法(nF)、皮法(pF)
2.5 电容器的单位换算: 1法拉=103毫法=106微法=109纳法=1012皮 法; 1pf=10-3nf=10-6uf=10-9mf=10-12 f;
2.6 电容的作用:隔直流,旁路,耦合,滤波,补偿,充放电,储能等
2.7 电容器的特性: 电容器容量的大小就是表示能贮存电能的大小,电容对交流信号的阻碍作用称为容抗,它与交流信号的频率和电容量有关。。电容的特性主要是隔直流通交流,通低频阻高频
2.8 电容器在电路中一般用“C”加数字表示.如C25表示编号为25的电容.
电容器两板间的电压正比于电容器所带的电荷量,设开始充电之前电容器不带电,图6.12中的斜线是电容器两板间的电压和电容器所带电荷量的关系曲线。充电结束时,电容器所带电荷量为Q,电容器两板间的电压等于电源电动势U=E电动势。在斜直线下面的两个窄竖长方形的高度为在当前电容器带电q时电容器两板间的电压U,窄竖长方形的宽度为设想在电压U之下又充入的小电荷量Δq,窄竖长方形的面积为在充入小电荷量Δq的过程中电源对电容器做的功UΔq。如果把整个充电过程用很多个窄竖长方形表示,所有窄竖长方形面积之和即近似等于整个充电过程中电源对电容器做功之和。窄竖长方形的个数越多,其面积之和就越接近斜直线下的三角形面积,所以可知在整个充电过程中电源对电容器做的功为斜直线下的三角形面积,即W= 1/2*QE电动势,此即为电容器储存的能量。在整个充电过程中电源电动势做功QE电动势,即图6.12中为以斜直线为对角线的矩形面积。电源电动势做功QE电动势与电容器储存的能量W=1/2*QE电动势之差为图6.12中斜直线上方的三角形面积。可用万用表的R×1k挡直接测试电容器有无充电过程以及有无内部短路或漏电,并可根据指针向右摆动的幅度大小估计出电容的容量。
众所周知,高频设计过程中总是需要功率因素足够高,但是由于电感性负载的存在,往往事与愿违,这时提高功率因数的常用方法就是给电感性负载并联电容器。由于制造工艺的原因,会造成大电容的分布电感比较大,导致高频性能不好,而小电容则刚刚相反,So,如果为了让低频、高频信号都很好地通过,那么就可以采用一个大电容再并上一个小电容的方式(其实这已经是司空见惯的PCB布局之一了)。在处理旁路电容时需要注意一个问题,就是旁路电容的频率越高时,受到引线电感成分的影响也越大,因此一般建议使用贴片电容。有些电容器如电解电容在交流信号下工作损耗随频率迅速增加,只能在直流或低频工作。
(作者: 来源:)