gpz球形支座,桥梁球型支座GQZ系列
GQZ系列支座安装:
1、采用本系列支座时,安装支座的垫石混凝土强度等级不得C40级。
2、安装支座处应设置支座垫石,垫石尺寸应按局部承压计算,其长度、宽度比支座底板尺寸大100mm以上,高度不小于100mm,且应布置钢筋。并按支座底
板地脚螺栓间距与底柱规格预留螺栓孔位置。若采用预埋钢板焊接连接时,支座就位后
桁架球形支座出图
gpz球形支座,桥梁球型支座GQZ系列
GQZ系列支座安装:
1、采用本系列支座时,安装支座的垫石混凝土强度等级不得C40级。
2、安装支座处应设置支座垫石,垫石尺寸应按局部承压计算,其长度、宽度比支座底板尺寸大100mm以上,高度不小于100mm,且应布置钢筋。并按支座底
板地脚螺栓间距与底柱规格预留螺栓孔位置。若采用预埋钢板焊接连接时,支座就位后,用对称断续方式焊接,焊接过程中应防止支座钢体温度过高,有效防止变形、烧坏聚四氟乙烯板等。
3、支座安装标高应符合设计要求。控制垫石顶面标高时要注意预留支座底板下砂浆垫层厚度。支座支承面四角高差不得大于1mm。
4、支座安装前方可开箱,并检查支座各部件及配件清单。支座安装前不允许随意拆卸固定件。
5、支座安装的注意事项:
1)支座安装位置划出中心十字,支座顺桥方向的中心线应与主梁顺桥向中心线平行。
2)活动支座的上顶板与下底盆顺桥方向的中心线应重合。
3)支座安装过程中,不得松开上顶板与下底盆的连接固定板,以防止发生过大的转角而倾覆。待支座安装完成后再拆除连接板,以防约束梁体的正常位移与转动。
4)检查不锈钢板外露面是否清洁,在运输、储存、安装过程中涂装是否碰掉,发现问题应及时清洁及补刷涂装,然后安装防尘设施。
6、支座安装还应满足现行桥梁施工规范的相关规定。支座使用期间,应按养护规范的有关规定定期进行检查及养护。



QGQZ球形支座安装说明书
默认分类2010-06-0900:04:46阅读47评论0字号:大中小
QGQZ(A)球型支座安装
1执行标准:
1.1《桥梁球型支座》(GB/T17955—2009)
1.2《城市桥梁工程施工与质量验收规范》(CJJ2—2008)
1.3本单位球型钢支座设计及技术要求
2支座安装前注意事项:
2.1产品相关信息核对:包装上承载力、型号与产品标牌是否相符。
2.2支座出厂时,已由生产厂家将支座调平,并拧紧连接螺栓,为防止运输安装过程中发生转动和
倾覆,支座到达现场后应检查临时连接是否完好,标尺指针是否完好。
2.3支座安装前,施工单位不得拆卸、转动连接螺栓。
2.4支座安装位置确定
球形支座相对板式支座具有哪些优势
球形橡胶支座与板式橡胶支座是当下常用的橡胶支座,其中板式支座更加常见。那么球形支座相对板式支座具有哪些优势呢?下面为大家详细介绍一下。

球型支座通过球面传力,不出现力的缩颈现象,作用在混凝土上的反力比较均匀。2、KLQZ系列抗拉球型钢支座通过球面聚四氟乙烯的滑动来实现支座的转动过程,转动力矩小,而且转动力矩只与支座球面半径及聚四氟乙烯的摩擦系数有关,与支座转角大小无关。 球型支座通过球面四氟乙烯板的滑动来实现支座的转动过程,转动力矩小,而且转动力矩只与支座球面半径及四氟乙烯滑板的摩擦系数有关,与支座转角大小无关。因此特别适用于转角的要求,设计转角可达0.06rad. 支座各向转动性能一致,适用于宽桥、曲线桥。支座几乎是全钢结构,不存在橡胶老化对支座转动性能的影响。
球型钢支座成本较橡胶支座稍高,橡胶支座若考虑其相应附件与球形支座的价格基本持平,但橡胶支座老化快,无法满足使用年限要求,而钢支座寿命一般可达100年以上。b、支座可承受的水平力:固定支座和纵向活动支座在非滑移方向的水平支反力不小于垂直支反力的10%o2、支座设计转角分0。 总之,考虑到保修期后的维修或更换费用,钢支座的性价比远远高于橡胶支座。 盆式橡胶支座与板式支座相比,橡胶体处于三向包围的状态中,所以橡胶老化速度会很慢,因此使用寿命更长。但盆式橡胶支座也存在橡胶老化问题,橡胶老化会使橡胶硬度增加,致使转动力矩增大,影响梁体的受力。 另外,盆式橡胶支座的转动是依靠橡胶板的变形,因此不能释放弯矩,支座反力分布变形前后不同,合力中心移位,对于梁体及墩台受力都不利。 以上就是今天为大家讲解的球形支座相对板式支座具有哪些优势,相信大家对球形支座更加了解了。希望在选购支座时可以考虑二者的不同以及实际使用的条件,选择合适的产品。
网架支座刚度取值2
3. 扭转问题
超高层建筑结构出现扭转现象无疑会影响建筑的正常使用,并产生安全性问题。首先,我们要对球形橡胶支座进行定期的检查及养护,清除支座附近的杂物及灰尘。而导致该类问题 出现的根本原因在于超高层建筑物结构设计师在进 行结构设计时,并没有对设计方案中建筑的刚度中 心、几何形心和结构三者是否重合进行仔细验 算,如此便造成超高层建筑无法承受水平方向的压 力,从而出现扭转问题。对此,笔者认为,在进行 结构平面布置时,就应注意加强建筑的外围刚度, 充分利用建筑周边的密柱和高度较高的裙梁来增强 建筑的抗侧刚度和抗扭刚度,如此可有效减轻建筑 的扭转效应。本项目根据两种软件计算的周期比以 及扭转系数等数值均显示出建筑良好的抗扭性能。
4. 基础设计问题
超高层建筑物结构设计中的基础设计是保证建筑