毫米波的优点:极宽的带宽,通常认为毫米波频率范围为26.5~300GHz,带宽高达273.5GHz,超过从直流到微波全部带宽的10倍。即使考虑大气吸收,在大气中传播时只能使用四个主要窗口,但这四个窗口的总带宽也可达135GHz,为微波以下各波段带宽之和的5倍。这在频率资源紧张的今天无疑具有吸引力。
波束窄:在相同天线尺寸下毫米波的波束要比微波的波束窄得多。例如一个12cm
软件系统公司
毫米波的优点:极宽的带宽,通常认为毫米波频率范围为26.5~300GHz,带宽高达273.5GHz,超过从直流到微波全部带宽的10倍。即使考虑大气吸收,在大气中传播时只能使用四个主要窗口,但这四个窗口的总带宽也可达135GHz,为微波以下各波段带宽之和的5倍。这在频率资源紧张的今天无疑具有吸引力。
波束窄:在相同天线尺寸下毫米波的波束要比微波的波束窄得多。例如一个12cm的天线,在9.4GHz时波束宽度为18度,而94GHz时波速宽度仅1.8度。因此能分辨相距更近的小目标或更为清晰地观察目标的细节。
毫米波 (millimeter wave ):波长为1~10毫米的电磁波称毫米波,它位于微波与远红外波相交叠的波长范围,因而兼有两种波谱的特点。毫米波的理论和技术分别是微波向高频的延伸和光波向低频的发展。 2020年6月15日,院士刘韵洁表示,南京网络通讯与安全紫金山实验室已研制出CMOS毫米波全集成4通道相控阵芯片。毫米波频段没有太准确的定义,通常将30~300GHz的频域(波长为1~10毫米)的电磁波称毫米波,它位于微波与远红外波相交叠的波长范围,因而兼有两种波谱的特点。毫米波的理论和技术分别是微波向高频的延伸和光波向低频的发展。
微波这段电磁频谱具有不同于其他波段的如下重要特点:选择性加热,物质吸收微波的能力,主要由其介质损耗因数来决定。介质损耗因数大的物质对微波的吸收能力就强,相反,介质损耗因数小的物质吸收微波的能力也弱。由于各物质的损耗因数存在差异,微波加热就表现出选择性加热的特点。物质不同,产生的热效果也不同。水分子属极性分子,介电常数较大,其介质损耗因数也很大,对微波具有强吸收能力。而蛋白质、碳水化合物等的介电常数相对较小,其对微波的吸收能力比水小得多。因此,对于食品来说,含水量的多少对微波加热效果影响很大。
微波这段电磁频谱具有不同于其他波段的如下重要特点:热惯性小,微波对介质材料是瞬时加热升温,升温速度快。另一方面,微波的输出功率随时可调,介质温升可无惰性的随之改变,不存在“余热”现象,极有利于自动控制和连续化生产的需要。
似光性,微波波长很短,比地球上的一般物体(如飞机,舰船,汽车建筑物等)尺寸相对要小得多,或在同一量级上。使得微波的特点与几何光学相似,即所谓的似光性。因此使用微波工作,能使电路元件尺寸减小;使系统更加紧凑;可以制成体积小,波束窄方向性很强,增益很高的天线系统,接受来自地面或空间各种物体反射回来的微弱信号,从而确定物体方位和距离,分析目标特征。由于微波波长与物体(实验室中无线设备)的尺寸有相同的量级,使得微波的特点又与较长的波相似,即所谓的似长波性。例如微波波导类似于无线电中的接收的器;喇叭天线和缝隙天线类似于无线电中的发射的器;微波谐振腔类似于无线电共振腔。
(作者: 来源:)