企业视频展播,请点击播放视频作者:北京和远科技有限公司
数字化运维解决困难
企业对信息化安全要求也越来越高,基线、补丁、安全编排与响应等建设缺乏,尤其是缺乏基于数据、流程、自动化的能力,难以实现整体信息安全提升,过往运维操作低效、容易出错、难以标准化的问题越来越明显,同时由于运维技术栈复杂度更高,已经难以通过人力运维来满足规模化、异构化的运维,企
航空航天元宇宙数字化运维效果
企业视频展播,请点击播放
视频作者:北京和远科技有限公司
数字化运维解决困难
企业对信息化安全要求也越来越高,基线、补丁、安全编排与响应等建设缺乏,尤其是缺乏基于数据、流程、自动化的能力,难以实现整体信息安全提升,过往运维操作低效、容易出错、难以标准化的问题越来越明显,同时由于运维技术栈复杂度更高,已经难以通过人力运维来满足规模化、异构化的运维,企业 IT也随之不断发展,并且业务趋向互联网化、规模化,运维对象数量增长,运维对象类型不断增加,以往以硬件、系统、虚拟化、资源为中心的运维对象,发展为以软件定义、微服务、容器、应用维度为中心的运维模式。
数字化运维怎样赋能?
数据当然需要通过分析才能发挥价值。今天人工智能异常,好像是良药一般。其实,数据挖掘、机器学习和人工智能这三个概念,是有密切联系也有具体区别的。数据挖掘是从一整套方法路线来讲的,指通过数据库、统计学、机器学习算法等技术,在数据中通过探索和建模的方法,发现未知并且有价值的规则和模式的一种技术,也指使用上述技术进行的建模过程。数据挖掘有自有的闭环方作为佳实践,需要经过业务理解-数据理解-数据准备-数据建模-模型优化与验证-部署上线的完整过程。
数字化运维面临的问题
由于运维对象、运维工具、运维需求的变化,导致金融机构有少则几套监控工具,多则数十套监控工具,而这些监控工具通常是在不同时期建设的,所以他们之间往往数据没有打通,技术栈也有较大的区别,形成了一座座运维数据的孤岛。
运维人员日常需要在众多的监控工具之间切换来切换去,导致故障的发现困难,故障的定位耗时耗力,故障的解决重复劳动,无法形成有效的知识积累。并且以前基于固定阈值的告警规则无法满足海量监控指标的设置和管理,需要将人工智能技术与运维工作结合到一起。随着智能运维(AIOps)的发展,机器学习的算法、模型等对运维数据的规范化提出了更高的要求。
数字化运维需要有哪些技术方向的突破?
1.企业运维希望能够对风险有一定的预知能力,尤其当安全风险越来越需要全局视角的当下,风险的可预知,可以减轻运维部门很多的压力。