9-38风机采用不等边元法绘制蜗壳外形。首先确定了小正方形在绘图中心的边长,确定了蜗壳的绘图半径;绘制的蜗壳外形如图4.6所示。(2)通过观察原型风机和斜槽风机叶片通道的流线图,可以看出设计风机的长、短叶片吸力面分离较弱,但没有强涡流区。以小正方形边长分别为蜗壳开口A的0.15、0.133、0.1167和0.1倍,根据公式确定9-38风机蜗壳轮廓各部分的
9-38风机


9-38风机采用不等边元法绘制蜗壳外形。首先确定了小正方形在绘图中心的边长,确定了蜗壳的绘图半径;绘制的蜗壳外形如图4.6所示。(2)通过观察原型风机和斜槽风机叶片通道的流线图,可以看出设计风机的长、短叶片吸力面分离较弱,但没有强涡流区。以小正方形边长分别为蜗壳开口A的0.15、0.133、0.1167和0.1倍,根据公式确定9-38风机蜗壳轮廓各部分的拉深半径,拉深后即可建立风机的三维模型。风机集尘器的设计是一种气体叶轮导向装置,9-38风机集尘器的几何形状和集尘器的安装位置对风机的性能都有影响,影响很大。
集电极的基本类型有圆柱形、圆锥形、圆形和圆锥形。圆柱形集尘器具有较大的流量损失和将气流导入叶轮的能力差,但易于处理。锥形集热器具有较大的流量损失和将流量导入叶轮的能力差。2dQ时功率也有所进步,但在大流量工况下功率依然只有较低的47%。9-38风机的圆弧集尘器具有相对较小的流量损失和更好的引导气流进入叶轮的能力。圆弧集热器引导气流进入叶轮后,涡流面积比锥形集热器小得多,减少了风机内部的流动损失。从而提高了带圆弧集热器的风机的效率和全压系数。锥弧集热器在现代风机中得到了广泛的应用。

当改进后的方法不能满足合作机组的性能要求时,采用现代9-38风机设计理论完成了风机的设计,并详细介绍了风机各部件结构参数的选择原则。根据叶轮流道断面面积逐渐变化的原理,建立了风机叶片型线成形的数学模型。根据该数学模型,采用双圆弧拼接的方法完成了叶片型线的绘制。设计的9-38风机效率为68%,比样机提高19.9%,总压由4626pa提高到5257pa,均满足合作机组的性能要求。根据叶轮流道断面面积逐渐变化的原理,建立了风机叶片型线成形的数学模型。通过对原型风机和斜槽风机叶片通道流线图的比较,可以看出所设计的风机内部流动得到了很大的改善,从而验证了本文风机设计方案的可行性。后介绍了离心风机的瞬态计算方法,分析了瞬态计算中时间步长的选择原则。采用瞬态数值方法对新设计的风机内部流动进行了数值模拟。在瞬态计算结果稳定后,9-38风机利用FW-H模型对设计风机的气动噪声进行了计算。设计风机的声压峰值为1100Hz,声压值为58dB。在远场噪声计算中,随着受流点到叶轮中心距离的增加,风机噪声值呈下降趋势。


在9-38风机的改进设计中,根据叶轮流道截面逐渐变化的原理,建立了风机叶片型面成形的数学模型。对设计的流场进行了计算。计算结果表明,新设计的风机性能较好。但仍有一些问题需要进一步解决和改进。
1。在9-38风机叶片型线设计中,选择了叶片安装角随叶轮半径线性变化的规律进行设计,但风机叶片型线的形成方法有多种形式。本文选择了一种较为典型的线性成形方法,并取得了较好的效果。因此,可以对离心风机叶片型线成形方法进行进一步的研究。
2。通过观察风机设计工况下叶片通道的流线图,可以看出设计风机长短叶片吸力面上仍存在一些分离现象。因此,本文通过改变9-38风机叶轮的结构参数和数值计算方法,对改进后的风机性能进行了评价和分析。通过查阅文献,发现一些流量控制方法可以改善叶片吸力面分离现象。因此,如果合理地将有效的流量控制方法应用于设计风机,可以使风机的吸入面分离。性能进一步提高。
3。在数值计算方面,在计算条件允许的情况下,可以使用更密集的网格和近壁模型。在湍流模型方面,还值得进一步研究,以便在离心风机的各种工况下得到更准确的结果。
(作者: 来源:)