3D血脑屏障模型芯片
SynVivo的SynBBB 3D血脑屏障模型通过模拟与跨血脑屏障(BBB)的内皮细胞通讯的脑组织细胞的组织切片来重建体内微环境。剪切诱导的内皮细胞紧密连接在Transwell模型中无法实现,而在SynBBB模型中使用生理性流体流很容易实现。紧密变化的形成可以使用SynVivo细胞阻抗分析仪通过生化或电气分析(评估电阻变化)进行测量。脑
SynBBB公司
3D血脑屏障模型芯片
SynVivo的SynBBB 3D血脑屏障模型通过模拟与跨血脑屏障(BBB)的内皮细胞通讯的脑组织细胞的组织切片来重建体内微环境。剪切诱导的内皮细胞紧密连接在Transwell模型中无法实现,而在SynBBB模型中使用生理性流体流很容易实现。紧密变化的形成可以使用SynVivo细胞阻抗分析仪通过生化或电气分析(评估电阻变化)进行测量。脑组织细胞与内皮细胞之间的相互作用在SynBBB分析中很容易观察到。 Transwell模型不允许实时显示这些细胞相互作用,这对于了解BBB微环境至关重要。
SynBBB是可以实现以下功能的体外BBB模型:
准确的体内血液动力学切应力
实时可视化细胞和屏障功能
大大减少了成本和时间
稳健易用的协议
顶腔(外通道)用于培养血管(内皮细胞),而基底外侧腔(腔)用于培养的脑组织细胞(星形细胞,周细胞,神经元)。多孔结构使血管细胞与组织细胞之间可以进行通讯。
想要了解更多的相关信息,欢迎拨打图片上的热线电话!
SynRAM 3D炎症模型提供了一个现实的测试环境,其中包括:
微血管环境中的生理切应力
具有完全封闭腔的体内类血管形态
细胞间相互作用的共培养能力
单个实验的实时定量滚动,粘附和迁移数据
SynRAM能够在一个实验中实时评估细胞相互作用,包括通过多个细胞层的滚动,粘附和迁移,并代表与体内结果密切相关的数据。
SynRAM的设计克服了流动室或基于Transwell室的测定法固有的当前局限性。当前的流动室设计过于简单,缺乏微环境的规模和几何形状,无法模拟迁移。同样,Transwell腔室无法解决体内观察到的流体剪切力和尺寸/拓扑结构,迁移的终点测量结果不可重现,并且无法提供实时可视化效果。
SynVivo的专有芯片设计范围从复杂的体内衍生微血管网络(从数字化图像获得)到产生逼真的细胞组成和血管形态,从而导致剪切和流动条件变化,再到简化的理想化网络,旨在再现细胞组成以及恒定的剪切和流动条件。
SynRAM 3D模型套件组件
可以以试剂盒形式购买使用SynRAM模型进行测定所需的所有基本组件。 根据个人研究需求,您可以从SynRAM芯片的“理想化”或“微血管”配置中进行选择。 包括所有附件,包括管子,夹子,针头和注射管。 入门工具包还将包括气动启动装置(使用SynRAM进行分析需要)。
(作者: 来源:)