拉曼光谱的分析方向
拉曼光谱仪分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源与分子的振动和转动。
拉曼光谱的分析方向有:
定性分析:不同的物质具有不同的特征光谱,因此可以通过光谱进行定性分析。
结构分析:对光谱谱带的分析,又是进行物质结构分析的基础。
定量分析:根据物质对光谱的吸光度的特点,可以对物质的量有很好的分析能
手持式拉曼光谱价格
拉曼光谱的分析方向
拉曼光谱仪分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源与分子的振动和转动。
拉曼光谱的分析方向有:
定性分析:不同的物质具有不同的特征光谱,因此可以通过光谱进行定性分析。
结构分析:对光谱谱带的分析,又是进行物质结构分析的基础。
定量分析:根据物质对光谱的吸光度的特点,可以对物质的量有很好的分析能力。
拉曼光谱仪
1、拉曼光谱用于分析的优点 拉曼光谱的分析方法不需要对样品进行前处理,也没有样品的制备过程,避免了一些误差的产生,并且在分析过程中操作简便,测定时间短,灵敏度高等优点
2、拉曼光谱用于分析的不足
(1)拉曼散射面积
(2)不同振动峰重叠和拉曼散射强度容易受光学系统参数等因素的影响
(3)荧光现象对傅立叶变换拉曼光谱分析的干扰
(4)在进行傅立叶变换光谱分析时,常出现曲线的非线性的问题
(5)任何一物质的引入都会对被测体体系带来某种程度的污染,这等于引入了一些误差的可能性,会对分析的结果产生一定的影响。
拉曼光谱
拉曼效应起源于分子振动(和点阵振动)与转动,因此从拉曼光谱中可以得到分子振动能级(点阵振动能级)与转动能级结构的知识。用虚的上能级概念可以说明了拉曼效应:设散射物分子原来处于声子基态,振动能级如图1所示。当受到入射光照射时,激发光与此分子的作用引起的极化可以看作为虚的吸收,表述为声子跃迁到虚态(Virtual state),虚能级上的声子立即跃迁到下能级而发光,即为散射光。设仍回到初始的声子态,则有如图1所示的三种情况。因而散射光中既有与入射光频率相同的谱线,也有与入射光频率不同的谱线,前者称为瑞利线,后者称为拉曼线。在拉曼线中,又把频率小于入射光频率的谱线称为斯托克斯线,而把频率大于入射光频率的谱线称为反斯托克斯线。
拉曼光谱应用
分析物质性质通过对拉曼光谱的分析可以知道物质的振动转动能级情况,从而可以鉴别物质,分析物质的性质。天然鸡血石和仿造鸡血石的拉曼光谱有本质的区别:前者主要是地开石和辰砂的拉曼光谱,后者主要是有机物的拉曼光谱,利用拉曼光谱可以区别二者。天然鸡血石“地”的主要成分为地开石,天然鸡血石样品“血”既有辰砂又有地开石,实际上是辰砂与地开石的集合体。仿造鸡血石“地”的主要成分是聚-,“血”与一种名为PermanentBordo的红色有机染料的拉曼光谱基本吻合。鉴别常见均有相当丰富的拉曼特征位移峰,且每个峰的信噪比较高,表明用拉曼光谱法对进行成分分析方法可行,得到的谱图质量较高。由于激光拉曼光谱具有微区分析功能,即使和其它白色粉末状物质混和在一起,也可以通过显微分析技术对其进行识别,得到和其它白色粉末分别的拉曼光谱图。利用拉曼光谱可以监测物质的制备:担载型硫化钼、硫化钨催化剂是由相应的担载型金属氧化物在H2和H2S气氛下程序升温制得的,在工业上主要用作加氢精制催化剂。在这样的工业条件下,二维表面金属氧化物转变为二维或三维金属硫化物。与负载金属氧化物相比,负载金属硫化物的拉曼光谱研究相对较少,这是由于黑色的硫化物相对可见光的吸收较强,导致信号较弱。然而拉曼光谱能较易检测到小的金属硫化物微晶。在380和450cm-1处出现两个归属为晶相和的谱峰,而担载型晶相硫化钼的谱峰比晶相硫化钼的谱峰宽得多。钴助剂的加入导致硫化钼的谱峰发生位移,强度减弱,这是由于相以及黑色的相的形成造成的。监测水果表面残留不同种类的水果表面滴加植保博士后得到的拉曼谱
-->